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Magnetic core–shell Carrageenan 
moss/Fe3O4: a polysaccharide‑based metallic 
nanoparticles for synthesis of pyrimidinone 
derivatives via Biginelli reaction
Hossein Mohammad Zaheri, Shahrzad Javanshir*  , Behnaz Hemmati, Zahra Dolatkhah and Maryam Fardpour

Abstract:  Magnetically recoverable polysaccharide-based metallic nanoparticles Carrageenan moss/Fe3O4 (Fe3O4@
CM) was tested for the synthesis of Pyrimidinone derivatives via Biginelli reaction under reflux conditions in Water. 
Interestingly, Fe3O4@CM prepared from unmodified Irish moss showed remarkable catalytic activity and recyclability. 
Low catalyst loading, simple reaction procedure, and using a green catalyst from a natural source are the important 
merits of this protocol.
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Introduction
The environmental factor is now the basis for new indus-
trial processes. It covers not only the atom economy, but 
also the solvent economy and the energy consumption, 
as well as reducing the costs and chemical risks. One of 
the current defies of industrial research is to bring all 
these principles to discover effective and environmentally 
friendly synthetic methodologies. For all these reasons, 
today, most chemical methods of synthesizing pharma-
ceutical compounds, food or cosmetics are designed to 
make benefit of catalytic systems. One of the major chal-
lenges of a catalytic post-treatment process is the devel-
opment of less expensive and more environmentally 
friendly catalysts. In this context, heterogeneous catalysts 
offer an answer to these problems by being easily sepa-
rable from the reaction medium and in some cases reus-
able. In this regard, the use of magnetic nanoparticles has 
emerged as a feasible solution; their insoluble and para-
magnetic nature enables easy and efficient separation of 
the catalysts from the reaction mixture with an external 
magnet. On the other hand, the magnetically retrievable 

nanocatalysts provide immense surface area, excellent 
activity, selectivity, recyclability and long lifetime [1–3]. 
Of the iron oxides only maghemite (γ-Fe2O3) and mag-
netite (Fe3O4) display ferrimagnetism due to the spinell 
structure. The naturally occurring magnetic compound 
clearly contains many interesting properties and poten-
tial for various applications and is commonly used in 
the composition of heterogeneous catalysts [4]. Various 
approaches exist for magnetic nanocatalysis, the main-
stream of which uses the nanoparticle simply as a vehi-
cle for recovery, to which a protective coating, then 
a metal binding ligand is anchored at the cost of much 
synthetic effort. By such a method, one could envisage 
anchoring nearly any homogeneous catalyst to a mag-
netic particle, so this method has a very broad scope of 
potential reactions. The utilization of polymer-coated 
magnetic particles and polysaccharide-based bio-nano-
composites is currently of particular interest; especially 
the ones composed of natural polymers that has become 
a very interesting approach in nanocatalytic protocols. 
Natural polysaccharides are important types of biopoly-
mers with excellent properties due to their chemical and 
structural diversity [5]. The marine environment and 
the diversity of associated organisms, offer a rich source 
of valuable materials. Amongst the marine resources, 
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polysaccharides of algal origin include alginates, agar and 
carrageenan are well known natural sources of polysac-
charides. The three  main varieties of carrageenans are 
iota (ι-), kappa (κ-) and lambda (λ-). Their structures are 
shown in Fig.  1a. The presence or absence of 3,6-anhy-
dro-d-galactose bridge, the number and the position of 
the sulphate substituents on the galactose carbons make 
it possible to classify the different categories of these 
polymers. Agri-food industry is considered as the main 
user of carrageenans. For instance, Kappa- and iota-
carrageenans are used as gelling agents, and lambda-
carrageenans as thickeners. The industrial source of 
carrageenan is Chondrus crispus (Irish moss or Carra-
geen moss), a species of red algae that grows abundantly 
along the rocky parts of the Atlantic coast of Europe and 
North America. Irish moss (IM) is mostly composed of 
proteins (~ 50%), carbohydrates (~ 40%) and inorganic 
salts (~ 10%). The water-soluble extract of Irish moss, 
also known as carrageenan, is a hydrocolloid gum rich in 
sulfated polysaccharides, with 15–40% sulfate ester con-
tent and a relative average molecular weight well above 
100  kDa [6, 7]. Therefore, we decided to evaluate the 
catalytic activity of natural marine-derived polymer car-
rageenan and magnetically Fe3O4 nanoparticles, Fe3O4@
CM (Fig. 1b) as a novel nano-biocatalyst in synthesis of 
some valuable heterocyclic compounds.

In the last two decades, a large number of reports and 
reviews have dealt with the development and enhance-
ment of the reaction conditions for the synthesis of 
4-dihydro-2(H)-pyrimidinones (DHPMs) [8]. DHPMs 
are pharmacophoric templates that can exert potent and 
selective actions on a diverse set of membrane recep-
tors, including ion channels, G protein-coupled recep-
tors and enzymes, when appropriately substituted. They 
are thereby, valuable building blocks for the synthesis of 

important heterocyclic derivatives and possess a broad 
range of biological and pharmacological activities includ-
ing the first cell-permeable antitumor scaffold, Monastrol 
(A), the modified analogue (R)-mon-97 (B) and anti-
hypertensive agent (R)-SQ 32,926 (C) (Fig.  2) [9–11]. 
Given that the original reaction conditions suffered from 
certain drawbacks, such as low yields and limited scope, 
using various catalysts and numerous alternative sub-
strates under different reaction conditions, has improved 
the synthesis of a vast number of DHPM derivatives with 
enhanced yields.

In continuation of our previous work based on the 
preparation and application of magnetically recoverable 
nano-biocatalysts Fe3O4@CM in MCRs [12], we decided 
to evaluate the catalytic activity of natural marine-
derived polymer carrageenan and magnetically Fe3O4 
nanoparticles, Fe3O4@CM (Fig. 1b) as a novel nano-bio-
catalyst in the synthesis of functionalized 3,4-dihydro-
2(H)-pyrimidinone (DHPM) derivatives via Biginelli 
reaction, a one-pot cyclocondensation of a β-keto ester, 
urea/thiourea and an aromatic aldehyde, using a Brøn-
sted acid–base solid catalysis (Scheme 1).

λ
a b

Fig. 1  The structures of iota-, kappa- and lambda-carrageenan (a) and Fe3O4@CM (b)

Fig. 2  Representative natural products DHPMs-containing 
framework
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Results and discussion
Characterization of Fe3O4@CM
The catalyst was synthesized and characterized according 
to our previous method [12]. The synthesized magnetite 
nanoparticles were characterized by various techniques, 
such as FT-IR spectroscopy, scanning electron micro-
scope (SEM), energy-dispersive X-ray spectroscopy 
(EDX), Transition electron microscope (TEM), ther-
mogravimetric analysis (TGA), vibrating sample mag-
netometer (VSM) analysis (see Additional file  1), and 
Brunauer–Emmett–Teller (BET) surface area analysis. 
The specific surface area, total pore volume (TOPV) and 
average pore diameter were obtained by N2 adsorption 
isotherms calculated by BET and BJH methods and found 
to be 1.2209  m2/g, 0.004168  cm3/g, and 54.1501  nm 
(Fig. 3). N2 sorption isotherms of the sample resembled 
Type IV isotherms, indicating the presence of mesopores 
(textural porosity) [13].

The TEM micrographs (a, b, and c) of Carrageenan 
moss (Chondrus crispus) and Fe3O4@CM (d, e, f, and 

g) are shown in Fig. 4. TEM images reveal the spherical 
shape of nanoparticles with a diameter of about 15 nm, 
and clearly divulge the core–shell structure of Fe3O4@
CM, with an average core diameter of about 10 nm, and 
CM shell thicknesses ranging from 3 to 5 nm.

Optimization of the reaction conditions
To evaluate the catalytic activity of Fe3O4@CM for the 
synthesis of pyrimidinone derivatives, a combination of 
4-chlorobenzaldehyde (1a), urea (2a) and ethyl acetoac-
etate (3a) (1:1:1 mol ratio) was considered as the model 
reaction. The obtained results are presented in Table 1. 
Under catalyst-free and reflux conditions in water, a 
trace amount of the desired product 4a was formed 
after 3 h (Table 1, entry 1). An excellent 87% yield of 4a 
was formed after 1.5  h when the reaction was carried 
out in the presence of 10  mg of the catalyst (Table  1, 
entry 2). To explore the effect of reaction temperature, 
the reaction was performed at room temperature in 
water. The yield of the product decreased with the dim-
inution of temperature (Table 1, entry 3). Next, in order 
to explore the effect of solvent on the product forma-
tion, the reaction was carried out under solvent-free 
conditions as well as using various solvents, such as 
EtOH, DMF, EtOAc, CHCl3 and Toluene (Table 1, entry 
6–10). The best results were obtained in water under 
reflux conditions (Table  1, entry 2). Due to the supe-
rior effect of ultrasonic homogenization to mechanical 
agitation [13], the use of ultrasound was also investi-
gated in water using an ultrasonic probe. When ultra-
sonic irradiation was applied to the reaction mixture 
at room temperature (Table  1, entry 5), the yield was 
comparable to that obtained under reflux conditions in 
water (Table 1, entry 2). Increasing the catalyst loading 
from 10 to 20 mg, led to an enhancement of the reac-
tion yield and a decrease in the reaction time (Table 1, 
entry 11). Increasing the catalyst loading up to 30  mg 
did not affect the yield of the reaction (Table  1, entry 
13). When the reaction was carried out under ultra-
sonic irradiation using 20  mg of the catalyst (Table  1, 

Scheme 1  Synthesis of substituted pyrimidines catalyzed by Fe3O4@CM
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entry 12), the obtained yield did not compete with the 
one under reflux conditions. The non-magnetic Car-
rageenan moss (NMCM) also showed good catalytic 
activity (entry 14) but the reaction time was longer 
(almost twice) and the catalyst separation was not as 
easy as Fe3O4@CM. This observation can be explained 
by the size of the nanoparticles, their good dispersion 
and improved surface area.

The scope of the substrates
To inspect the extent of the catalyst application, the 
condensation reaction of a variety of aldehydes with 
1,3-dicarbonyl compounds (ethyl acetoacetate, methyl 
acetoacetate and acetylacetone) and urea or thiourea 
was also investigated under the optimal reaction con-
ditions and the results are given in Table 2. In all cases, 
Fe3O4@CM smoothly catalyzed the reaction in green 

(d)

(f)

Fe3O4 Core 

CM shell

Fig. 4  TEM micrographs showing the cuticle of a Chondrus crispus frond at sections from a tip, b middle and c base (Reprint by permission from 
www.natur​e.com/scien​tific​repor​ts https​://doi.org/10.1038/srep1​1645) and d–f Fe3O4@CM with 30 nm magnification

http://www.nature.com/scientificreports
https://doi.org/10.1038/srep11645
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reaction media to form the corresponding DHPMs with 
high to excellent yields of 73–95%. Aromatic aldehydes 
with electron-donating groups such as 4-methyl-benza-
ldehyde, 4-chloro-benzaldehyde, and 4-methoxy-ben-
zaldehyde were converted to the corresponding DHPM 
derivatives in high yields in reaction with 1,3-dicarbo-
nyl compounds (ethyl acetoacetate, methyl acetoacetate 
and acetylacetone) and urea (Table  2, entries 1, 2, 3, 7, 
8, 9, 11 and 12). Aromatic aldehydes bearing electron-
withdrawing groups including 3-nitro-benzaldehyde and 
2-nitro-benzaldehyde also gave the desired products 
in excellent yields under the same reaction conditions 
(Table 2, entries 4, 5 and 13).

In the next step, the recyclability and reusability of 
the catalyst were investigated. Upon completion of each 
run, the catalyst was collected with an external magnet, 
washed several times with ethyl acetate and ethanol, 
dried and used in the next run. The product yields were 
maintained high up to the sixth run (Fig. 5).

Figure  6 shows the SEM micrograph, along with the 
corresponding elemental mapping and spectra by EDX, 
of a selected region of the fresh (Fig.  6a) and recy-
cled Fe3O4@CM catalyst (Fig.  6b). As revealed by the 
EDX patterns, the Fe:S atom ratio has augmented from 
8:1 in the fresh catalyst to 12:1 in the recycled catalyst. 

Therefore, there has been a 0.25% decrease in the atomic 
percentage of sulfur after recycling (Fig. 6b), which could 
explain the yield decrease during the consecutive cata-
lytic cycles.

Proposed reaction mechanism
A plausible reaction mechanism for the synthesis of 
DHPMs catalyzed by Fe3O4@CM is proposed in Scheme 2. 
N-acyl/thionyl iminium intermediate (7) is generated via 
cyclocondensation of aldehyde (1) and urea/thiourea (2) 
in the presence of Fe3O4@CM as a bifunctional Brönsted 
acid–base solid catalyst. Subsequently, 1,3-dicarbonyl com-
pound (3) enters the reaction cycle, followed by cyclization 
and dehydration procedures under the acidic conditions to 
produce intermediate (9). Finally, a [1, 3] -H shift leads to 
the formation of the corresponding 3,4-dihydropyrimidin-
2(1H)-one/thione (4).

To demonstrate the effectiveness of Fe3O4@CM, a com-
parison of the present study and previous reports is illus-
trated in Fig.  7 [22, 24–29]. The results clearly represent 
that this protocol is indeed more effective than many of 
the others in terms of the product yield, reaction time and 
using a green solvent.

Table 1  Optimization of the reaction conditions (catalyst loading, solvent and temperature) for the synthesis of 4a 

*Optimum reaction conditions
a  The reaction was catalyzed by 10 mg of non-magnetic Carrageenan moss
b  The temperature was kept at 25 °C using a water bath

Entry Condition/solvent Catalyst (mg) Temp (°C) Time (min) Yield (%)

1 H2O 0 100 180 Trace

2 H2O 10 100 90 87

3 H2O 10 25 360 64

4 SF 10 50 240 70

5 Ultrasound/H2O 10 25b 90 85

6 EtOH 10 78 120 73

7 DMF 10 153 180 67

8 EtOAC 10 77 150 80

9 CHCl2 10 61 240 63

10 Toluene 10 111 270 65

11* H2O 20 100 60 95

12 Ultrasound/H2O 20 25 60 75

13 H2O 30 100 60 95

14a H2O NMCM (10) 100 110 90
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Table 2  Synthesis of pyrimidine derivatives under optimum reaction conditions*

Entry R1 X R2 Product Time (min) Yield (%) Mp (°C)

Observed Reported [Refs]

1 4-Cl O Et

N
H

NH

Cl

OMe

O

EtO

4a

60 95 210–212 213–214 [14]

2 4-Me O Et

N
H

NH

Me

OMe

O

EtO

4b

90 73 213–215 214–217 [15]

3 4-OMe O Et

N
H

NH

OMe

OMe

O

EtO

4c

90 87 200–202 202–203 [16]

4 2-NO2 O Et

NO2

N
H

NH

O

EtO

O

4d

60 85 220–221 220 [17]

5 3-NO2 O Et

N
H

NH

OMe

O

EtO

NO2

4e

45 76 214–216 217 [18]

6 H O Me

N
H

NH

OMe

O

MeO

4f

60 87 210–212 207–210 [19]

7 4-Cl O Me

N
H

NH

OMe

O

MeO

Cl

4g

60 85 205–207 204–206 [20]

8 4-OMe O Me

N
H

NH

O

OMe

O

MeO

Me

4h

45 93 190–192 191–193 [19]
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Conclusions
In summary, Fe3O4@CM, the hybrid magnetic mate-
rial prepared from natural Chondrus crispus, was found 
to be a highly efficient nano-biocatalyst for the synthesis 
of pyrimidinone derivatives via Biginelli reaction. This 
method offers several advantages, such as omitting toxic 
solvents or catalysts, high yields, short reaction time, no 
waste production, very simple work-up, using a green 
magnetically separable and recyclable catalyst from a 
natural source. The elemental composition of the three 

Table 2  (continued)

Entry R1 X R2 Product Time (min) Yield (%) Mp (°C)

Observed Reported [Refs]

9 4-Cl S Me

N
H

NH

SMe

O

MeO

Cl

4i

60 90 154–155 153–156[21]

10 H S Me

N
H

NH

SMe

O

MeO

4j

60 90 225–227 226–228 [22]

11 4-Cl S Et

N
H

NH

SMe

O

EtO

Cl

4k

45 93 190–192 188–190 [21]

12 4-OMe S Et

N
H

NH

SMe

O

EtO

OMe

4l

60 88 152–154 151–153 [22]

13 3-NO2 S Et

N
H

NH

SMe

O

EtO

NO2

4m

60 90 205–207 202–204 [23]

*Reaction catalyzed by Fe3O4@CM (20 mg) under reflux conditions in water
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Fig. 5  Reusability of Fe3O4@CM in the synthesis of pyrimidinones 
(4a)
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types of catalysts was analyzed by EDX, which led to the 
identification of the following main elements in the cat-
alyst structure: C, O, Fe, S and N. The ultrathin coating 
surrounding the magnetic cores was also evidenced by 
TEM images.

Experimental section
Instruments and characterization
All chemicals were purchased from Merck, Fluka, and 
Sigma-Aldrich companies and were used without further 
purification. Thin layer chromatography (TLC) was per-
formed by using aluminum plates coated with silica gel 
60 F-254 plates (Merck) using ethyl acetate and n-hexane 
(1:2) as eluents. The spots were detected either under 
UV light or by placing in an iodine chamber. Melting 

points were determined in open capillaries using an Elec-
trothermal 9100 instrument. 1H NMR (300  MHz) and 
13C NMR (75 MHz) spectra were recorded on a Bruker 
Avance DPX-300 instrument. The spectra were measured 
in DMSO-d6 relative to TMS as internal standard. FT-IR 
spectra was obtained with a shimadzu 8400S with spec-
troscopic grade KBr. Transmission Electron Microscopy 
characterization of Fe3O4@CM was performed using a 
transmission microscope Philips CM-30 with an accel-
erating voltage of 150 and 250  kV. Scanning electron 
microscopy (SEM) was recorded on a VEG//TESCAN 
with gold coating, and energy dispersive X-ray spectros-
copy (EDX) was recorded on a VEG//TESCAN-XMU. 
The TOPSONIC ultrasonic homogenizer was used to 
perform reactions under ultrasonic irradiation.

Element Weight% Atomic%
C K 32.65 49.06
N K 0.36 0.46
O K 35.19 39.69
S K 2.16 1.21
Fe K 29.64 9.58
Totals 100.00

Element Weight% Atomic%
C K 25.61 41.16
N K 3.53 4.86
O K 33.8 40.77
S K 1.6 0.96
Fe K 35.46 12.25

Totals 100.00

a

b

Fig. 6  SEM and EDX analysis of Fe3O4@CM a before reaction b after recycling
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Scheme 2  A plausible reaction mechanism for Fe3O4@CM-catalyzed Biginelli condensation reaction

Fig. 7  The comparison of this work and some of the previous reports using various catalysts under different reaction conditions
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The synthesis of Fe3O4@CM
Irish moss (0.2 g) was dissolved in distilled water (10 ml), 
then FeCl3.6H2O (0.5 g, 1.8 mmol) and FeCl2.4H2O (0.2 g, 
1  mmol) was added to the solution. The mixture was 
stirred at 80 °C, until obtaining a clear solution and then 
aqueous ammonia (25%) was added to this solution until 
the medium reached pH 12. The solution was maintained 
at 80 °C under vigorous stirring for 30 min. The precipi-
tate was collected with an external magnet, and washed 
with water and methanol for several times, then dried 
under vacuum.

General procedure for the synthesis of pyrimidinone 
derivatives
In a 50  ml round-bottom flask, a mixture of an aro-
matic aldehyde (1  mmol), urea or thiourea (1  mmol), 
a β-ketoester (1  mmol) and Fe3O4@CM (10  mg) was 
refluxed in H2O (3 ml). After completion of the reaction, 
as indicated by TLC, the Fe3O4@CM was separated with 
an external magnet and then the product was purified by 
recrystallization in hot ethanol.

Spectra data for the synthesis compounds (4a, 4f, 4i 
and 4m)
Ethyl 4​‑(4​‑ch​lor​oph​eny​l)‑​1,2​,3,​4‑t​etr​ahy​dro​‑6‑​met​hyl​‑2‑​oxo​
pyr​imidine‑5‑carboxylate (4a)
IR (KBr): ν (cm−1) 3241, 3114, 2968, 1713, 1645, 1469; mp 
(oC):208–210; 1H NMR (300 MHz-DMSO-d6): δ (ppm): 
1.19 (t, 3H), 2.36 (s, 3H, CH3), 4.10 (q, 2H, CH2), 5.40 (d, 
1H, CH), 5.72 (s, 1H, NH), 7.26–7.32 (m, 4H, Ar–H), 7.76 
(brs, 1H), 9.23 (brs, 1H); 13C NMR (75 MHz, DMSO-d6): 
δ (ppm): 14.1, 17.8, 53.2, 60.1, 101.1, 128.0, 128.9, 133.7, 
142.1, 146.3, 152.9, 165.4.

Methyl 1,2,3,4‑tetrahydro‑6‑methyl‑2‑oxo‑4‑phenylpyrimi‑
dine‑5‑carboxylate (4f)
IR (KBr): v (cm−1) 3332, 3224, 3107, 2947, 1706, 1668; 
mp (oC): 233–235; 1H NMR (300  MHz, DMSO-d6) δ 
ppm = 2.25 (s, 3H), 3.53 (s, 3H), 5.14 (s, 1H), 7.33–7.23 
(m, 5H, Ar–H), 7.74 (brs, 1H, NH), 9.21 (brs, 1H, NH); 13 
CNMR (75 MHz, DMSO-d6, δ ppm): 165.8, 152.1, 148.6, 
144.6, 128.4, 127.2, 126.1, 99.0, 53.7, 50.7, 17.8.

Methyl 4‑(4‑chlorophenyl)‑1,2,3,4‑tetrahydro‑6‑methyl‑2‑thi‑
oxopyrimidine‑5‑carboxylate (4i)
IR (KBr): ν (cm−1): 3315.41 and 3282.62 (N–H 
str), 1616.24 (C=O str), 1490.87 (C=S), 1413.12 
(C–N), 1085.85 (C–O), 717.47 (C–Cl), 1HNMR 
(300  MHz-DMSO-d6), δ (ppm): 2.42 (s, 3H), 3.51 (s, 
3H), 5.32 (s, 1H), 7.22 (d, 2H, J = 8  Hz, Ar–H), 7.41 (d, 
2H, J = 8 Hz, Ar–H), 9.18 (s, 1H), 9.75 (S, 1H); 13CNMR 

(75  MHz, DMSO-d6), δ (ppm): 21.1, 50.4, 60.3, 108.4, 
125.2, 128.4, 134.4, 143.1, 156.6, 170.3, 175.5.

Ethyl 1,2,3,4‑tetrahydro‑6‑methyl‑4‑(3‑nitrophenyl)‑2‑thiox‑
opyrimidine‑5‑carboxylate (4m)
IR (KBr, cm−1): 3360.98 and 3276.83 (N–H str), 1640 
(C=O str), 1471.59 (C–S), 1413.72 (C–N and N=O, over-
lap and str), 1083.92 (C–O), 1HNMR, (300 MHz-DMSO-
d6), δ (ppm): 1.40 (t, J = 7.2  Hz, 3H), 2.28 (s, 3H), 4.76 
(q, J = 7.2 Hz, 2H), 5.35 (s, 1H), 7.61–8.22 (m, 4H), 9.12 
(s, 1H), 9.84 (s, 1H); 13CNMR, (75  MHz, DMSO-d6) δ 
(ppm): 16.2, 19.23, 57.4, 61.3, 103.4, 120.5, 122.3, 127.7, 
133.2, 142.5, 148.6, 161, 168.3, 173.3.

Additional file

Additional file 1: Figure S1. FT-IR Spectra of Fe3O4@CM. Figure S2. XRD 
analysis of Fe3O4@CM. Figure S3. SEM micrograph of Fe3O4@CM. Figure 
S4. TEM Micrograph of Fe3O4@CM. Figure S5. VSM analysis of Fe3O4 and 
Fe3O4@CM. Figure S6. EDX analysis of Fe3O4@CM. Figure S7. TGA-DTA 
analysis of Fe3O4@CM.
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