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Abstract 

Purpose:  Free radicals are considered as the causative agents of a variety of acute and chronic pathologies. Natural 
antioxidants have drawn attention of the researchers in recent years for their ability to scavenge free radicals with 
minimal or even no side effects. This study evaluates the antioxidant capacity of agathisflavone, a naturally occurring 
biflavonoid by a number of in vitro methods.

Methods:  Agathisflavone was subjected to DPPH, ABTS, OH and NO radical scavenging assay, reducing potential and 
inhibition of lipid peroxidation (TBARS) test using trolox as a standard.

Results:  Agathisflavone showed concentration-dependent antioxidant activity against all types of free radicals used 
in this study. The antioxidant capacity, reducing potential and inhibition of lipid peroxidation showed by agathisfla-
vone were comparable to that of trolox.

Conclusion:  Agathisflavone exhibited antioxidant capacity, which suggests considering this biflavonoid for the use 
in the prevention and/or treatment of diseases precipitated by oxidative stress.
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Introduction
Free radicals, both reactive oxygen and nitrogen species 
(ROS/RNS), produced by partial reduction of oxygen 
and nitrogen respectively, are inevitable processes of our 
body [1–3]. Some of these ROS and RNS are involved in 
various fundamental processes of cell survival, includ-
ing mitochondrial respiration and regulation, signali-
zation, cell proliferation and differentiation. However, 
any alteration in the cellular levels of the ROS/RNS can 
induce oxidative stress leading to cellular damages, ham-
pering proper cellular functioning or even cell death [4, 
5]. Prolonged exposure to ROS/RNS results in the dam-
ages to cell macromolecules such as carbohydrates, pro-
teins, lipids as well as genetic materials (e.g., DNA, RNA) 
which eventually gives rise to the pathophysiology of a 

number of serious diseases including cancer, diabetes, 
atherosclerosis, immunosuppression, swelling, cardio-
vascular diseases and neurodegenerative disorders [6, 
7]. Evidence suggests that certain neurological disorders 
such as, Alzheimer’s disease, Parkinson’s disease, schizo-
phrenia, anxiety and depression have a direct link to long 
term exposure of the cells to excessive oxidative stresses 
[8]. In this context, naturally occurring antioxidants have 
been studied extensively to find their possible role in the 
prevention and cure for such diseases [9, 10].

Flavonoids represent an important class of natural anti-
oxidants with significant therapeutic potential. Biflava-
noids, a type of flavonoids, comprehends a large group of 
compounds with promising effect against oxidative dam-
age [11].

The biflavonoids are structurally dimer of flavo-
noids connected with each other by a C–C or C–O 
glycosidic linkage [12]. Same as those flavonoids, bio-
flavonoids have been reported for a number of biologi-
cal activities proved through in vitro and ex vivo studies, 
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which include anti-inflammatory [13–15], inhibition 
of cytochrome P450 enzymes [16], antiviral [17, 18], and 
neuroprotective activity [19, 20]. Agathisflavone, chemi-
cally known as (8-[5,7-dihydroxy-2-(4-hydroxyphenyl)-
4-oxochromen-6-yl]-5,7-dihydroxy-2-(4-hydroxyphenyl)
chromen-4-one) is a yellow color biflavonoid with the 
molar mass of 538.457  g/mol, density 1.656  g/cm3 and 
splitting coefficient 5.09 (Fig.  1) [21]. It occurs in dif-
ferent parts (e.g. leaf, stem, fruit, root) of many plants 
including Caesalpinia pyramidalis, Anacardium occi-
dentale, Rhus parviflora and can be extracted by polar or 
medium polar solvents including methanol and ethanol 
[22–25]. Previous studies suggest that agathisflavone has 
some important biological activities, including antiviral 
[26], antimicrobial [27], and neuroprotective [28] activ-
ity. However, little research was done with the intent of 
describing the antioxidant property of this compound.

Thus the present study was designed to assess the anti-
oxidant property of this biflavonoid by evaluating its abil-
ity to scavenge the free radicals, namely DPPH, ABTS, 
hydroxyl and nitric oxide (NO). It was also tested for its 
capacity to inhibit lipid peroxidation by TBARS method 
and the ability to transfer electron by ferric reducing 
assay.

Materials and methods
Chemicals
Trolox, 2,2-diphenyl-1-picrylhydrazyl (DPPH), 
2,20-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) 
(ABTS), thiobarbituric acid (TBA), trichloroacetic acid 
(TCA), sodium nitroprusside (SNP), 2,20-azobis-2-ami-
dinopropane dihydrochloride (AAPH), 2-deoxyribose 
and potassium ferricyanide were purchased from Sigma-
Aldrich Co. (St. Louis, MO, USA). All chemicals and sol-
vents used were of analytical grade.

Plant
Fresh leaves of Caesalpinia pyramidalis Tull. (Family: 
Fabaceae) was collected from Valente, Brazil and identi-
fied by Prof. Dr. L. P. de Queiróz (State University of Feira 
de Santana) and Prof. Dr. M. de F. Agra (Laboratory of 
Pharmaceutical Technology UFPB). A voucher speci-
men was deposited at the herbarium of Alexandre Leal 
da Costa of Biology Institute of the Federal University of 
Bahia (accession number 240291).

Extraction, isolation and identification of agathisflavone
Fresh leaves of C. pyramidalis was extracted with meth-
anol and chromatographed using silica gel to get pure 
agathiflavone. The structure was elucidated by spectro-
scopic data including 1D, 2D NMR and LS–MS carried 
out at the Department of Chemistry, Federal University 
of Bahia, Brazil (data not shown). Noteworthy to men-
tion here that naturally occurring agathisflavone exhibits 
atropisomerism and thus was isolated as a mixture of the 
atropisomers.

In vitro antioxidant activity evaluation
DPPH radical scavenging test
This test was done according to the method described by 
Machado et  al. [29] with slight modifications. Briefly, a 
reaction mixture containing of 0.5  mL of agathisflavone 
(0.058, 0.116, 0.232, 0.464 and 0.928  mM) was mixed 
with 1.4 mL of DPPH stock solution in ethanol (100 µM). 
Resulting solution was mixed vigorously and kept in the 
dark at room temperature for 30  min. Same procedure 
was followed for trolox used as standard and the absorb-
ance was measured for both agathisflavone or trolox 
against control at 517  nm. The percentage of inhibition 
was calculated by the following equation:

where Ac and At is the absorbance of the control and test 
(agathisflavone/trolox), respectively.

ABTS radical scavenging test
The method described by Re et al. [30] with slight modi-
fications was used for this test. The ABTS radical cation 
was initially formed by mixing 5 mL of 7 mM ABTS with 
88 µL of 2.45 mM of potassium persulfate (K2S2O8) solu-
tion with further incubation at room temperature in 
the absence of light for 16 h. The resulting solution was 
diluted in ethanol in such a way to obtain an absorbance 
of 0.70 ± 0.05 at 734 nm. This test was done in the dark 
and at room temperature. An aliquot (0.5 mL) of agath-
isflavone/trolox (0.058–0.928  mM) solution was mixed 

% Inhibition of DPPH =

(

Ac − At

Ac

)

× 100

Fig. 1  Chemical structure of agathisflavone
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with 1.96  mL of the ABTS solution and the absorbance 
was measured after 6 min. The results were expressed as 
percentage of inhibition of the ABTS in a similar fashion 
to that of DPPH radical scavenging assay.

OH radical scavenging assay
Hydroxyl radical (OH·) was generated by Fenton reac-
tion [31] with slight modifications. Different concentra-
tions (0.058–0.928  mM) of agathisflavone/trolox at was 
added to the reaction medium containing FeSO4 (6 mM), 
2-deoxyribose (5  mM), H2O2 (100  mM) and phosphate 
buffer (20  mM, pH 7.4). After incubating the mixture 
for 30 min at ambient temperature, the reaction was ter-
minated by the addition of phosphoric acid (4%, w/w), 
followed by the addition of 1% TBA (50  mM, NaOH 
aqueous solution). It was then heated for 15 min at 95 °C, 
cooled and the absorbance was measured at 734  nm in 
a spectrophotometer. The results were expressed as per-
centage of 2-deoxyribose degradation.

where Ac and At is the absorbance of the control and test 
(agathisflavone/trolox), respectively.

Reducing potential assay
The method described by Singhal et  al. [32] with slight 
modifications was used to determine the reducing capac-
ity of agathisflavone. Briefly, 1  mL of agathisflavone/
trolox (0.058–0.928  mM) was added with 1  mL of 1% 
potassium ferricyanide and 0.5  mL of sodium phos-
phate buffer (0.2  M, pH 6.6). The reaction mixture was 
incubated at 50  °C for 20 min, followed by the addition 
of 0.5  mL of 10% TCA, 0.5  mL of distilled water and 
0.25  mL of 0.1% ferric chloride. The absorbance of the 
reaction mixture was measured at 700 nm in a spectro-
photometer against a blank solution. The EC50 of the 
sample and standard required for 50% reduction poten-
tial was determined.

NO scavenging test
Nitric oxide was produced from the spontaneous decom-
position of sodium nitroprusside in 20  mM phosphate 
buffer (pH 7.4). Once generated, nitric oxide interacts 
with oxygen to produce nitrite ions, which was meas-
ured by the Griess reaction [33]. The reaction mixture 
containing 1  mL of SNP in phosphate buffer (20  mM) 
and 0.5  mL of agathisflavone/trolox (0.058–0.928  mM) 
was incubated at 37  °C for 1  h. An aliquot (0.5  mL) of 
the reaction mixture was taken and homogenized with 
0.5  mL of Griess reagent. Absorbance of chromophore 

% 2-Dexyribose degradation =

(

Ac − At

Ac

)

× 100

was measured at 540 nm in a spectrophotometer and the 
results were expressed as percentage inhibition of nitrite 
ions.

Inhibition of lipid peroxidation (TBARS test)
The TBARS (thiobarbituric acid reactive substances) 
method described by Guimarães et  al. [34] was used 
evaluate the ability of agathisflavone to inhibit lipid 
peroxidation. Briefly, an aliquot of (0.5  mL) of egg yolk 
homogenate (5% w/v in 50  mM phosphate buffer, pH 
7.4) was mixed with 0.5  mL of agathisflavone/trolox 
(0.058–0.928  mM). The lipid peroxidation was induced 
by the addition of 0.5 mL of AAPH (200 mM) for 60 min 
at 37 °C. Subsequently, 1 mL of TCA (10%) and 1 mL of 
TBA (0.67%) was added and heated at 97 °C for 15 min. 
After 15 min, the reaction mixture was centrifuged and 
the absorbance of the supernatant was measured at 
532  nm. The extent of lipid peroxidation was estimated 
by TBARS levels formed and the results were expressed 
as percentage of inhibition of lipid peroxidation:

where Ac and At is the absorbance of the control and test 
(agathisflavone/trolox), respectively.

Statistical analysis
All the experiments were done in triplicate and the 
results are expressed as mean ± standard error of mean 
(SEM). Statistical analysis was performed using the pro-
gram GraphPad Prism® 6.02 (San Diego, CA, USA), 
one-way ANOVA, multiple comparisons following by 
t-Student–Newman–Keuls post hoc test. The results 
were considered statistically significant at p < 0.05.

Results
DPPH radical scavenging
Agathisflavone was found to scavenge DPPH radical 
in a concentration-dependent manner with the high-
est inhibition observed for the highest concentration of 
agathisflavone tested (0.928  mM). The radical scaveng-
ing capacity of agathisflavone was almost similar to that 
of the trolox at all concentrations (except at 0.232 and 
0.464  mM). The EC50s calculated for agathisflavone and 
trolox were 0.474 mM (0.399–0.564 mM) and 0.149 mM 
(0.129–0.173 mM), respectively at 95% confidence inter-
val (Fig. 2).

ABTS scavenging assay
Concentration dependent ABTS radical scavenging 
activity was observed for both agathisflavone and trolox 
with the highest inhibition observed for the highest 

% Inhibition of lipid peroxidation =

(

Ac − At

Ac

)

× 100
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concentration tested (Fig. 3). EC50s calculated for agath-
isflavone and trolox were 0.179  mM (0.137–0.234  mM) 
and 0.311  mM (0.283–0.341 0.474  mM), respectively 
with 95% confidence interval.

OH radical scavenging assay
In this study, agathisflavone showed a concentration-
dependent OH radical scavenging capacity. The activ-
ity was slightly lower than that of trolox only at 0.116 
and 0.232  mM, but higher at other concentrations with 
statistical significance (p < 0.05) (Fig.  4). EC50s calcu-
lated for agathisflavone and standard were 0.163  mM 

(0.101–0.263  mM) and 0.372  mM (0.280–0.496  mM), 
respectively with 95% confidence interval.

Reducing potential
Both agathisflavone and trolox reduced ferric ion to fer-
rous in a concentration dependent manner (Fig. 5). The 
activity was slightly higher for trolox than that of agath-
isflavone. The EC50s calculated for the sample and stand-
ard were 0.163  mM (0.101–0.263  mM) and 0.372  mM 
(0.280–0.496  mM), respectively with 95% confidence 
interval.

Fig. 2  DPPH· scavenging capacity of agathisflavone and trolox. [Values are mean ± SEM (n = 3) ap < 0.05 when compared to the system (100% of 
DPPH·), bp < 0.05 when compared to the trolox (standard) (ANOVA and t-Student–Neuman–Keuls as a post hoc test)]

Fig. 3  ABTS radical scavenging capacity of agathisflavone and trolox. [Values are mean ± SEM (n = 3); ap < 0.05 when compared to the system 
(100% of ABTS), bp < 0.05 when compared to trolox (ANOVA and t-Student–Neuman–Keuls as a post hoc test)]
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NO scavenging assay
Agathisflavone exhibited prominent NO scavenging 
activity which was evident from the reduced produc-
tion of nitrite ion (Fig.  6). Concentration-dependant 
antioxidant NO scavenging capacity was observed for 
both agathisflavone and standard and the activity was 
slightly higher for agathisflavone that that of trolox. 
EC50s calculated for the sample and standard were 
0.209  mM (0.162–0.2682  mM) and 0.456  mM (0.415–
0.493 mM), respectively with 95% confidence interval.

TBARS test
In this test, agathisflavone was found to be a better 
inhibitor of lipid peroxidation that that of trolox at all 
the concentrations tested (Fig.  7). Both agathisflavone 
and trolox showed concentration-dependent inhibition 
of lipid peroxidation evident from the reduced levels of 
EC50s calculated for agathisflavone and standard were 
0.179  mM (0.154–0.208  mM) and 0.352  mM (0.233–
0.530 mM), respectively with 95% confidence interval.

Fig. 4  OH· scavenging capacity of agathisflavone and trolox. [Values are mean ± SEM (n = 3) ap < 0.05 when compared to the system (100% of OH·), 
bp < 0.05 when compared to the trolox (standard) (ANOVA and t-Student–Neuman–Keuls as a post hoc test)]

Fig. 5  Reducing potential (Fe3+/Fe2+) of agathisflavone and trolox. [Values are mean ± SEM (n = 3) ap < 0.05 when compared to the system 
(without agathisflavone/trolox), bp < 0.05 when compared to the trolox (standard) (ANOVA and t-Student–Neuman–Keuls as a post hoc test)]
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Discussion
Present investigation suggests that agathisflavone pos-
sesses prominent antioxidant capacity as observed 
from several in  vitro antioxidant test systems. There 
are four hydroxyl groups in the structure of agathisfla-
vone (Fig.  8a), i.e., 4′–OH, 7–OH, 7″–OH and 4‴–OH, 
(Fig. 8b) that can donate H· (radical hydrogen) to reduce 
free radicals. Although the rest two hydroxyls (5″–OH 
and 5–OH) radicals cannot donate radical hydrogen, but 
they do participate in the process by forming resonance 
structures (Fig. 8c, d).

Antioxidant activity of several flavonoids with mecha-
nism similar to that of agathisflavone have been studied 
using methods as DPPH and/or ABTS, OH and NO scav-
enging assay, as well as their ability to inhibit lipid peroxi-
dation by TBARS assay and reducing ability [35, 36].

When compared, agathisflavone was found to be a bet-
ter scavenger of ABTS than that of DPPH. Although both 
ABTS and DPPH are free radicals, but the differ in the way 
that DPPH is a stable free radical itself but ABTS is formed 
instantly in the reaction solution. Thus both of the methods 
are used for antioxidant activity study but a difference in the 

Fig. 6  NO radical scavenging capacity of agathisflavone and trolox. [Values are mean ± SEM (n = 3) ap < 0.05 when compared to the system (100% 
of nitrite ions), bp < 0.05 when compared to the trolox (standard) (ANOVA and t-Student–Neuman–Keuls as a post hoc test)]

Fig. 7  TBARS inhibitory capacity of agathisflavone and trolox. [Values are mean ± SEM (n = 3) ap < 0.05 when compared to the system (100% of 
TBARS levels), bp < 0.05 when compared to trolox (standard) (ANOVA and t-Student–Neuman–Keuls as a post hoc test)]
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EC50 of a compound can occur due to the difference in the 
mechanism of action of neutralizing free radicals. In relat-
ing the results of DPPH· (EC50 = 0.895  mM) and ABTS·+ 
(EC50 = 0.123 mM) tests, it is possible to say that agathis-
flavone showed a better scavenging capacity of ABTS·+. 
This may be due to effects of donation of electrons, leading 
to the reduction of ABTS·+ formation. On the other hand, 
transference of hydrogen atoms may occur to form of a 
DPPH stable molecule by the action of this biflavonoid [37, 
38]. Our findings are similar to the results suggested by Ye 
et al. [39], who were isolated a biflavonoid from the metha-
nolic extract of the Camellia oleifera Abel shells and with a 
chemical structure that of the agathisflavone.

Agathiflavone isolated from the leaf extract of Anacardium 
occidentale was subjected to DPPH radical scavenging assay by 
Ajileye et al. [25]. The EC50 value calculated for agathisflavone 

was 366.37 μg/mL, which is equivalent to 0.679 mM, slightly 
lower that the value observed in the present work (0.474 mM). 
This slight change may happen due to the variation of the 
DPPH· concentration in the reaction mixture.

The compounds that have large quantities of ·OH (free) 
in their chemical structures have higher reducing poten-
tial [11]. In a previous study the antioxidant activity of 
the natural biflavonoid (morelloflavone-4000-O-b-d-gli-
cosil, fukugiside e morelloflavone) isolated from the ethyl 
acetate extract of the dried fruits of Garcinia brasiliensis 
was seen with the potential reduction capacity [9]. Like 
the evaluated compound in this study, the biflavonoids 
isolated by Gontijo et al. [9] showed reducing capacities 
in a concentration-dependent manner.

The ·OH oxidizing radical and its presence in the reac-
tion medium promotes degradation of 2-deoxyribose. 

Fig. 8  Proposed mechanism of antioxidant activity of the agathisflavone by donating of H· and electrons. a Chemical structure of agathisflavone 
(OH groups at various positions). b Possible C-terminals from where proton (H+) can be donated. c and d Proton (H+) donation and neutralization of 
free radicals, resonance structures of agathisflavone
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In our study, agathisflavone at all concentration tested 
may react with ·OH, thus the inhibition of the degrada-
tion of the monosaccharide utilized [3, 40]. Based on the 
comparison between the EC50 values of the agathisfla-
vone and the antioxidant standard (trolox) in inhibiting 
the 2-deoxyribose degradation, this biflavonoid can be 
considered as a potent scavenger of ·OH. This may be an 
indication of protecting important biomolecules, such as 
proteins, lipids and genetic materials (e.g.—DNA, RNA) 
[41].

Agathisflavone also significantly (p < 0.05) inhibited the 
levels of NO. An excessive generation of NO is related to 
a number of pathological conditions, including intracel-
lular oxidative damages and cell death [13, 41]. Thus, the 
inhibitory effects of this damaging radicals may inhibit or 
protect cells and cellular organelles from the damaging 
effects of NO. Furthermore, peroxyl radicals generated 
by AAPH are evident to cause lipid peroxidation [42]. In 
our study, we found that the agathisflavone significantly 
inhibited TBARS production in comparison to the NC 
and trolox, suggesting a prominent protective capacity of 
the lipid molecules from oxidative damage.

The biflavonoids procyanidin, fukugetin, amentof-
lavone and podocarpusflavone isolated from the ethyl 
acetate extract of the leaves of Garcinia brasiliensis have 
been found to exhibit antioxidant capacity at 10  µM 
(equivalent to 0.01 mM) with an average inhibition by 28, 
42, 37 and 30%, respectively, those values are smaller than 
the activity observed in the quercetin group (100  µM; 
47%) [5]. In this study, we found an average inhibition 
for the agathisflavone at 0.928 mM by 88%. It seems, the 
biflavonoid agathisflavone may be a potent antioxidant.

Conclusion
The antioxidant capacity investigated of the agathisfla-
vone applying in  vitro test systems allows to conclude 
that the this biflavonoid delay or prevent significantly 
the lipid peroxidation and the other referred molecules 
induced by free radicals, since, the compound showed 
an antioxidant capacity in DPPH·, ABTS·+, OH·, NO and 
reduction potential tests. The oxidative damage is linked 
to inducing damages in the brain and other organs, lead-
ing to varieties of health effects in human and other 
animals. The agathisflavone may be a new hope in the 
context of drug discovery and development, especially 
with the importance of the prevention and treatment of 
diseases related to oxidative stress.
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