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Abstract 

Background:  Quantitative structure–activity relationship (QSAR) was carried out to study a series of aminooxa-
diazoles as PIM1 inhibitors having pki ranging from 5.59 to 9.62 (ki in nM). The present study was performed using 
Genetic Algorithm method of variable selection (GFA), multiple linear regression analysis (MLR) and non-linear multi-
ple regression analysis (MNLR) to build unambiguous QSAR models of 34 substituted aminooxadiazoles toward PIM1 
inhibitory activity based on topological descriptors.

Results:  Results showed that the MLR and MNLR predict activity in a satisfactory manner. We concluded that both 
models provide a high agreement between the predicted and observed values of PIM1 inhibitory activity. Also, they 
exhibit good stability towards data variations for the validation methods. Furthermore, based on the similarity prin-
ciple we performed a database screening to identify putative PIM1 candidates inhibitors, and predict their inhibitory 
activities using the proposed MLR model.

Conclusions:  This approach can be easily handled by chemists, to distinguish, which ones among the future 
designed aminooxadiazoles structures could be lead-like and those that couldn’t be, thus, they can be eliminated in 
the early stages of drug discovery process.
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Introduction
Proviral integration site for Moloney murine leukemia 
virus (PIM) is a family of serine/threonine protein kinases 
that are widely expressed and are involved in cell sur-
vival and proliferation as well as a number of other signal 
transduction [1, 2]. This family is composed of three iso-
forms: PIM1, PIM2, and PIM3 that share a high level of 
sequence homology and exhibit some functional redun-
dancy. Over-expression of PIM1 and PIM2 kinases has 
been reported in hematologic malignancies also in solid 

tumors such as diffuse large B cell lymphomas (DLBCL) 
and prostate cancer [3], thus, these findings make it an 
attractive target for cancer therapy [1].

Several heterocycles have been studied with different 
approaches so far, as 5-(1H-indol-5-yl)-1,3,4-thiadiazol-
2-amines [4] and pyrrolo carbazole [5], thiazolidine [6] 
including many clinical compounds as SGI-1776 [7] and 
AZD-1208 [8] that have been found to be able to inhibit 
PIM1 kinase and exhibit an anti-cancer activity. How-
ever, no PIM1 inhibitor has crossed all stages of drug 
discovery process and approved as a drug yet, there-
fore there is always a need to discover and identify new 
PIM1 inhibitors. Consequently, in order to reduce time 
and cost, in addition to design and identify more potent 
PIM inhibitors, theoretical research can circumvent 
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these difficulties and allow obtaining precise data while 
taking advantage of the rapid progress of computing 
chemical descriptors, which can be obtained easily from 
publicly available software and servers. Descriptors can 
be exploited to build a quantitative structure–activ-
ity relationship (QSAR) model to enable calculation of 
the activity and prediction of the efficacy of new potent 
aminooxadiazoles. In the recent years, many QSAR 
studies have been developed on different PIM1 hetero-
cycle inhibitors [9, 10], despite, it would be worthwhile 
to extend these data and develop QSAR studies on new 
PIM1 inhibitors. Recently, a series of some potent PIM1 
inhibitors: have been designed and reported by Wurz 
et  al. [11]. We believe that this is the first QSAR study 
performed on the reported activities of this series. That 
prompted us to aim an in silico study based on it to 
design new molecules with enhanced inhibitory activity.

Quantitative structure activity relationship is one of 
the most common approach in computer aided drug 
design [12] as well as in many other applications, includ-
ing predictive toxicology, and risk assessment [13, 14]. 
QSAR studies are based on the fact that the biological 
activities of organic molecules depend on their chemi-
cal structures, and can be quantitatively described by 
chemometrics models. This approach has a wide appli-
cation for evaluating the potential impact of chemicals 
on human health, and technological processes as in the 
pharmaceutical industry and drug discovery [15]. Thus, 
it is necessary to develop a QSAR model for the predic-
tion of activity before synthesis of new PIM1 inhibitors. 
A successful QSAR model not only, helps to understand 
relationships between the structural properties and bio-
logical activity of any class of molecules, but also provides 
researchers a deep analysis about the lead molecules to 
be used in further studies [16].

The present study aims to derive QSAR models, which 
explain the relationship between the anti-cancer activity 
and the structure of 34 compounds based on physico-
chemical descriptors using several chemometric methods 
such as genetic functional algorithm for variable selec-
tion GFA, multiple linear regression MLR and non-linear 
regression MNLR for modeling and William’s plot for 
applicability domain. Finally, PubChem database was vir-
tually screened using the most active compound in the 
series as a reference molecule.

Materials and methods
For QSAR studies a series of 34 aminooxadiazoles with 
reported activity values were compiled from the litera-
ture [11]. The activity was expressed as ki and is defined 
as the binding affinity constants of aminooxadiazoles to 
PIM1 kinase. Because the inhibitory activity values cover 
a wide range, they are converted into logarithm units 

(pki= − log ki) (ki in nM) for modelling purposes. Figure 1 
and Table 1 show the substituted structures of the stud-
ied compounds. For modeling, the data set was split into 
two sets. Twenty-seven molecules were chosen based on 
the activity variation to represent the quantitative model 
(training set) and the rest were used to test the perfor-
mance of proposed model (Test set). Additionally leave-
one-out protocol and Y-Randomization were performed 
on the training set for internal validation of the obtained 
models. 

Molecular modeling
All modeling studies were performed using the SYBYL-X 
2.0 molecular modeling package (Tripos Inc., St. Louis, 
USA) running on a windows 7, 32 bit workstation. Three-
dimensional structures were built using the SKETCH 
option in SYBYL. All compounds were minimized under 
the Tripos standard force field [17] with Gasteiger–
Hückel atomic partial charges [18] by the Powell method 
with a gradient convergence criterion of 0.01  kcal/mol 
Å. To describe the compound structural diversity and in 
order to obtain validated QSAR models. The optimized 
structures were saved in sdf format, and transferred to 
PaDEL-Descriptor version 2.18 tool kits, topological 
descriptors encode the chemical properties have been 
calculated for each aminooxadiazole, using PaDEL 
server [19]. Only three suitable ones have been chosen 
as relevant descriptors for the studied inhibitory activ-
ity: Mannhold LogP (MLogP) and two Burden modified 
eigenvalues (SpMax1_Bhi and SpMin6_Bhm).

Methodology
After the calculation of descriptors, a Genetic Func-
tion Algorithm (GFA) analysis was performed to select 
the relevant molecular descriptors [20, 21]. The selected 
descriptors were then used to perform an MLR study 
until a valid model including: the critical probability 
P value < 0.05 for all descriptors and for the complete 
model, The Fisher static, the coefficient of determina-
tion, the mean squared error and the multi-collinearity 
test, internal and external validations, in addition to 
the Y-Randomization. Those selected descriptors were 
exploited to generate the applicability domain, then to 
evaluate a non-linear model. Later, the proposed model 
was used to identify aminooxadiazoles analogues in 
PubChem database and predict their PIM1 inhibitory 
activities.

Statistical analysis
In the present study, XLSTAT version 2013 [22] was used 
to perform multiple linear regression (MLR) and non-lin-
ear regression (MNLR), which are two statistical meth-
ods used to derive a mathematical relationship between 
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a property of a given system and a set of descriptors that 
encode chemical information. A Genetic Algorithm tool 
was used to carried out the Genetic algorithm analysis 
(GFA) to reduce the number of the variables of the data 
set and choose the pertinent ones, in which, the muta-
tion probability and smoothing parameter were set 
to 0.1 and 0.5, respectively. GFA in this study serves to 
select descriptors that were applied as input in multiple 
linear regression (MLR), multiple non-linear regression 
(MNLR) and applicability domain (AD).

Validation
The main objective of a QSAR study is to obtain a model 
with the highest predictive and generalization abilities. In 
order to evaluate the predictive ability of the developed 
QSAR models, two principals (internal validation and 
external validation) were performed. For the internal vali-
dation the leave-one-out cross-validation (Q2) was used to 
evaluate the internal stability and of the present models. A 
high Q2 value means a high internal predictive power of 
a QSAR model and a good robustness. Nevertheless, the 
study of Globarikh [23] indicated that there is no correla-
tion between the value of Q2 for the training set and pre-
dictive ability of the test set, revealing that the Q2 is still 
insufficient for a reliable estimation of the model’s pre-
dictive power for all new compounds. Thus, the external 
validation remains the only way to determine both the gen-
eralizability and the true predictive ability of QSAR models 
for new chemicals. For this reason, the statistical external 
validation was applied to the models as described by Glo-
barikh and Tropsha. Roy and Roy [23–25] using a test set.

Y‑Randomization test
The obtained models were further validated by the 
Y-Randomization method [21]. The dependent vector 
(pki) is randomly shuffled many times and after every 
iteration, a new QSAR model is developed. The new 
QSAR models are expected to have lower Q2 and R2 
values than those the original models. This technique is 
carried out to eliminate the possibility of the chance cor-
relation. If higher values of the Q2 and R2 are obtained, 
it means that an acceptable QSAR can’t be generated for 
this data set because of the structural redundancy and 
chance correlation.

Results and discussion
Data set for analysis
A QSAR study was carried out on 34 aminooxadiazoles 
for the first time in order to establish a quantitative rela-
tionship between the PIM1 inhibitory activity and their 
chemical structures. The three selected descriptors by 
GFA method among 1543 other ones firstly calculated by 
PaDEL server are shown in Table 2.

Multiple linear regression (MLR)
Based on the selected descriptors a mathematical linear 
model was proposed to predict quantitatively the physic-
ochemical effects of substituents on the PIM1 inhibitory 
activity of the 34 molecules using multiple linear regres-
sion. The linear model using this method includes three 
molecular descriptors: the total energy SpMin6_Bhm, the 
energy MLogP and the surface tension SpMax1_Bhi.

The following equation represents the best obtained 
linear QSAR model using the regression linear multiple 
(MLR) method:

N = 27, R = 0.838, R2 = 0.714, Q2 = 0.60, MSE = 0.29, 
F = 19.12, P < 0.0001.

The established models are judged by the statistical 
keys, such as, R2 is the coefficient of determination, F is 
the Fisher statistic and MSE is the mean squared error. 
Higher coefficient of determination and lower mean 
squared error indicate that the model is more reliable. A 
P smaller than 0.05 means that the obtained equation is 
statistically significant at the 95% level. The leave one out 
cross-validated correlation coefficient LOO (Q2 = 0.60) 
illustrates the reliability of the model by focusing on the 
sensitivity of the model towards the elimination of any 
single data point. A value of Q2 greater than 0.5 is the 
basic criteria to qualify a model as valid [23].

The multi-collinearity between the three chosen 
descriptors was evaluated by calculating their variation 
inflation factors VIF as shown in Table  3. The VIF [26] 
was defined as 1/(1 − R2), where R is the coefficient of cor-
relation between one descriptor and all the other descrip-
tors in the proposed model. A VIF value greater than 5.0 
indicates that the model is unstable; a value between 1.0 
and 4.0 indicates that the model is acceptable. Accord-
ingly, it has been found that the descriptors used in the 
proposed model have very low-inter-correlation.

Negative values in the regression coefficients show 
that the indicated variables (MLogP and SpMax1_Bhi) 

Y = a0 +

n
∑

i=1

aixi

(1)
pKi = 43.24 + 8.396× (SpMin6_Bhm)

− 1.93× (MLogP)− 9.65× (SpMax1_Bhi)

N
N

O

R2

R1
Fig. 1  The chemical structure of the studied compounds
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Table 1  Observed activities of studied aminooxadiazoles

N R1 R2 pki N R1 R2 pki

1 NH2 8.769 18 6.943

2 NH2 5.591 19 7.494

3* NH2 7.259 20* c-C3H5 8.080

4 NH2 8.677 21* i-Bu 6.600

5 NH2 8.522 22 Ph 6.939

6 NH2 8.795 23* NH-CH2CF3 9.619

7 NH2 9.284 24 NH-i-Pr 9.075

8 NH2 8.853 25 NH-c-C3H5 8.920

9 NH2 6.823 26 NH-oxetane 8.657
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contribute negatively to the value of pki, whereas positive 
value in the regression coefficient of variable (SpMin6_
Bhm) indicates that the greater the value of the variable, 
the greater the value of the pki.

The predicted values computed using this MLR model 
with the experimental values for the training and test sets 
are shown in Table 4, and plotted in Fig. 2. The selected 
descriptors (Eq. 1) in the MLR model are then used as the 
input variables to perform the multiple nonlinear regres-
sion (MNLR).

Multiples non‑linear regression (MNLR)
The nonlinear regression model was also used to evaluate 
the effect of the substituents in the studied aminooxadia-
zoles on the PIM1 inhibitory activity, improve the struc-
ture–activity relationship in quantitative manner.

Training set used in MLR and descriptors selected by 
GFA were used in this method to build the non-linear 
model. The best regression performance was selected 
according to the coefficient of determination R2 and the 
mean squared error MSE, a pre-programmed function in 

Table 1  continued

10 NH2 8.699 27 NH-t-Bu 9.259

11 NH2 7.508 28* NH-3-F-Ph 7.161

12 NH2 8.677 29* NH-i-Pr 8.886

13 NH2 7.832 30 NH-i-Pr 9.346

14 NH2 8.568 31 NH-i-Pr 8.795

15 NH2 8.958 32 NH-i-Pr 7.267

16 7.284 33 NH-i-Pr 8.920

17 8.522 34* NH-i-Pr 8.443

*Test set
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the XLSTAT was used to evaluate the nonlinear regres-
sion model as follows:

where X1, X2, X3, X4…: represent the variables, and a, b, c, 
d…: represent the parameters.

The resulting equation is as follows:

N = 27, R = 0.910, R2 = 0.812, Q2 = 0.56, MSE = 0.22.
The leave one out cross-validated correlation coef-

ficient LOO (Q2 = 0.56) illustrates the reliability of the 
model by focusing on the sensitivity of the model towards 
the elimination of any single data point. A value of Q2 
greater than 0.5 is the basic criteria to qualify a model as 
valid [23]. It can be seen clearly from the key statistical 
indicators, coefficient of determination R2, mean squared 
error MSE and, value of Q2, that the predicting ability of 
this model is better than that of the linear model (MLR). 
The enhancement in the predictive ability was due to the 
involvement of the squared terms in the nonlinear model.

The predicted values computed using this MNLR 
model for the training and test sets are shown in Table 4, 
and plotted in Fig. 3.

y == a+ (bX1 + cX2 + dX3 + eX4 . . .)

+

(

fX2
1 + gX2

2 + hX2
3 + iX2

4 . . .

)

.

(2)

pKi = −19641.39− 47.63× (SpMin6_Bhm)

+ 15.79× (MLogP)+ 9356.96× (SpMax1_Bhi)

+ 21.6× (SpMin6_Bhm)2 − 3.10× (MLogP)2

− 1113.59× (SpMax1_Bhi)2

Applicability domain
The utility of a QSAR model is its accurate prediction 
ability for new chemical, so, once the QSAR model is 
built, its domain of applicability (AD) must be defined. A 
model is considered valid only if it is able to make pre-
dictions within its training domain and only the predic-
tion for new compounds falling within its applicability 
domain can be regarded credible and not model extrapo-
lations. The most common method to define the AD, it is 
based on the determination of the leverage value of each 
compound [25]. The Williams plot [The plot of standard-
ized residuals versus leverage values (h)] is used in the 
present study to visualize the AD of the QSAR model.

where the xi is the descriptor vector of the considered 
compound, X is the descriptor matrix derived from the 
training set descriptor values, the threshold is defined as:

where n is the number of compound in the training set, k 
is the number of the descriptors in the proposed model, a 
leverage (h) greater than the threshold (h*) indicates that 
the predicted response is an extrapolation of the model 
and, consequently, it can be unreliable.

The Williams plot of the presented MLR model is shown 
in the Fig. 4, the applicability domain is established inside 

hi = xTi

(

XTX
)

−1

xi

h∗ =
3(k + 1)

n

Table 2  The values of three relevant molecular descriptors used in the best QSAR model

 * Test set

No pki SpMin6_Bhm MLogP SpMax1_Bhi No pki SpMin6_Bhm MLogP SpMax1_Bhi

1 8.769 1.276 2.67 4.187 18 8.522 1.352 2.890 4.225

2 5.591 0.707 2.01 4.135 19 6.943 1.228 2.889 4.172

3* 7.259 1.276 2.889 4.188 20* 7.494 1.372 3.330 4.190

4 8.677 1.361 2.78 4.188 21* 8.080 1.372 3 4.191

5 8.522 1.266 2.45 4.187 22 6.600 1.364 3.11 4.190

6 8.795 1.361 2.56 4.188 23* 6.939 1.350 3.329 4.194

7 9.284 1.349 2.449 4.188 24 9.619 1.334 2.449 4.190

8 8.853 1.286 2.56 4.189 25 9.075 1.340 2.89 4.190

9 6.823 1.015 2.23 4.186 26 8.920 1.372 2.89 4.190

10 8.699 1.295 2.56 4.190 27 8.657 1.341 2.78 4.190

11 7.508 1.015 2.01 4.188 28 9.259 1.341 3 4.190

12 8.677 1.278 2.89 4.194 29* 7.161 1.350 3.11 4.190

13 7.832 1.276 2.78 4.187 30* 8.886 1.338 2.78 4.191

14 8.568 1.361 2.78 4.188 31 9.346 1.349 2.78 4.192

15 8.958 1.361 2.78 4.188 32 8.795 1.341 2.78 4.192

16 7.284 1.360 3.11 4.226 33 7.267 1.249 2.45 4.188

17 8.522 1.276 2.67 4.187 34* 8.920 1.335 2.78 4.195
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a squared area within ± 2 standard deviation and a lever-
age threshold h* of 0.44. As shown in the Williams plot 
the majority of the compounds in the data set are in this 
area, except one (Compound 2) in training set exceeds 

the threshold and it is considered as an outlier compound. 
This erroneous prediction could probably be attributed to 
the R2 position, whereas, the majority of compounds are 
substituted by an indole linked to another moiety at this 
position this compound has just an indole moiety at the R2 
position. Also, compound 22 in the test set is wrongly pre-
dicted (> 3  s), but with lower leverage values (h < h*) and 
that could probably be attributed to a different mechanism 
of action rather than to molecular structures [25].

Y‑Randomization
The Y-Randomization method was carried out to validate 
the MLR and MNLR models. Several random shuffles 

Table 3  Multi-colinearity test

Variables SpMin6_Bhm MLogP SpMax1_Bhi

VIF 3.035 2.201 1.869

Table 4  Observed values and  calculated values of  pki 
according to different methods

 * Test set

No pki (obs) pki (pred)

MLR MNLR

1 8.769 8.345 8.328

2 5.591 5.358 5.535

3* 7.259 7.916 8.045

4 8.677 8.838 9.037

5 8.522 8.695 8.261

6 8.795 9.272 9.197

7 9.284 9.383 9.036

8 8.853 8.629 8.514

9 6.823 7.021 7.510

10 8.699 8.694 8.595

11 7.508 7.429 6.996

12 8.677 7.880 8.171

13 7.832 8.143 8.186

14 8.568 8.838 9.024

15 8.958 8.838 9.024

16 7.284 7.824 7.648

17 8.522 8.192 8.241

18 6.943 7.664 7.010

19 7.494 7.852 7.486

20* 8.080 8.481 8.772

21* 6.600 8.211 8.299

22 6.939 7.623 7.309

23* 9.619 9.235 8.919

24 9.075 8.439 8.655

25 8.920 8.706 9.016

26 8.657 8.653 8.856

27 9.259 8.228 8.390

28* 7.161 8.092 8.144

29* 8.886 8.621 8.856

30 9.346 8.708 8.984

31 8.795 8.641 8.909

32 7.267 8.544 8.174

33 8.920 8.556 8.902

34* 8.522 8.785 8.804

5

6

7

8

9

10

5 6 7 8 9 10

pk
i 

Pred(pki) 

Pred(pKi) / pKi 

Fig. 2  Graphical representation of predicted and observed activity 
(pki) values calculated by MLR
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5 6 7 8 9 10
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Pred(pki) 

Pred(pki) / pki 

Fig. 3  Graphical representation of predicted and observed activity 
(pki) values calculated by MNLR
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of the dependent variable (pki) were performed then 
after every shuffle, a QSAR was developed and obtained 
results are shown in Table  5. The low Q2 and R2 values 
obtained after every shuffle indicate that the good result 

in our original MLR and MLR models are not due to a 
chance correlation of the training set.

External validation
To test the prediction ability of the obtained models, it 
is required the use of a test set for external validation. 
Thus, the models generated on the training set using 26 
aminooxadiazoles were used to predict the PIM1 inhibi-
tory activity of the remaining molecules. The parameters 
of the performance of the generated models are shown 
in Table 6. It can be seen clearly that the MNLR is stati-
cally better than the MLR model in terms of coefficient of 
determination, but the MLR has a better predictive abil-
ity and good internal stability.

Among the obtained models for this series, the MLR 
model has the highest prediction ability for the test set 
(R2

test = 0.81), also the highest cross-validation coefficient 
(Q2 = 0.60), all that support the applicability of the pro-
posed MLR prediction model. However, both the results 
obtained by the MLR and MNLR should be regarded as 
satisfactory for predicting the PIM1 activity using the 
proposed descriptors.

Virtual screening for aminooxadiazole analogues 
and prediction of their PIM1 inhibitory activities
Overall, this study can be used to screen chemical data-
bases to identify new PIM1 inhibitors as well as to pre-
dict their inhibitory activities. Therefore, the built MLR 
model was used to screen the PubChem database, by 
searching compounds had 95% similarity with the most 

Fig. 4  Williams plot for the training set and external validation for the PIM1 inhibitory activity of aminooxadiazole compounds, listed in Table 1 
(h* = 0.44 and residual limits ± 2)

Table 5  Q2 and  R2 values after  several Y-Randomization 
tests

Iteration MLR MNLR

Q2 R2 Q2 R2

1 0.390 0.235 0.031 0.350

2 0.120 0.094 0.095 0.008

3 0.290 0.124 0.079 0.190

4 0.340 0.129 − 0.264 0.290

5 0.180 0.263 − 0.160 0.335

6 0.160 0.194 − 0.522 0.140

7 0.20 0.075 − 0.105 0.006

8 0.130 0.043 0.230 0.026

9 0.140 0.116 0.120 0.196

10 0.230 0.031 0.060 0.131

Table 6  The statistical results of  MLR and  MNLR models 
with validation techniques

Method/parameter R R2 Q2
R
2
test

MSE

MLR 0.838 0.712 0.60 0.81 0.29

MNLR 0.910 0.812 0.56 0.75 0.22
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Table 7  Predicted values and calculated h of pki (ki in nM) of the sixteen identified hits

N Molecular structure Pubchem CID Pred(pki) for PIM1 h

1 123719668 9.029 0.0892

2 123533604 8.048 0.1831

3 123527918 8.746 0.0408

4 90256832 9.210 0.1813

5 88938076 9.283 0.0890

6 68356835 9.291 0.1007

7 68356805 8.561 0.2014

8 68356785 8.533 0.0739

9 68356773 7.888 0.2468

10 68356701 7.887 0.2459
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active compound of the studied series (Compound 29) 
and fulfilling the Lipinski’s rule of bioavailability [27]. Six-
teen compounds were identified as shown in Table 7 and 
their pki values were predicted in addition to their lever-
ages (h) to check if they fall in the AD of the proposed 
model. (Table 7, Figs. 5 and 6).  

It can be seen from the Fig. 6 that all identified com-
pounds have h < h*, (h* = 0.44) so their predicted values 
are regarded reliable.

Conclusion
To predict the PIM1 inhibitory activity of a series substi-
tuted aminooxadiazoles, two unambiguous models were 
developed in this study with topological descriptors. A 
good stability and prediction ability were exhibited by 
MLR and MNLR models, on the same set of descriptor. 
Furthermore, the obtained results from each model on 
this series of compounds are quite similar, no one of the 
established models is considered better than the other. 

Table 7  continued

11 68328341 8.547 0.0631

12 68328223 8.806 0.0477

13 68328001 8.871 0.0649

14 66554899 8.970 0.0532

15 66554898 8.698 0.1189

16 66554728 9.100 0.0760
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Fig. 5  Reference structure of aminooxadiazole model with lowest 
binding constant ki
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So, the MLR and MNLR models are regarded as effective 
tools to predict PIM1 inhibitory activity of substituted 
aminooxadiazoles based on the proposed descriptors. 
The predictive ability of the transparent model MLR 
was excellent enough to be used to virtually screen novel 
PIM1 inhibitors from PubChem database.

Finally, we combined a machine learning approach 
using unambiguous MLR-QSAR model with PubChem 
database filtering concept to provide a rustic ligand-
based virtual screening protocol. As a result, 16 poten-
tially aminooxadiazole analogues as PIM1 inhibitors were 
identified. This study provides the theoretical basis and 
specific chemicals for PIM1 inhibitors, which can help 
the experimental research groups to search for potential 
anticancer.
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