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Abstract 

Background:  Mechano heterocyclic chemistry (MCH) is a recent quickly growing technique in the synthesis of het‑
erocycles and draws the attention of heterocyclic chemists towards the uses of grindstone technique in a solvent free 
green efficient synthesis of many heterocyclic systems. On the other hand, multicomponent approach has opened 
the door for the rapid and efficient one-step procedures to synthesize a wide range of complex targets. Azlactones 
have been reported to exhibit a wide range of pharmaceutical properties including immune suppressive, anticancer. 
Antimicrobial, antitumor, anti-inflammatory and antiviral. It also used as useful synthons in the synthesis of several 
small molecules, including amino acids and peptides.

Results:  The present work describes an efficient one step green synthesis of 4-arylidene-2-phenyl-5(4H)-oxazolones 
(azlactones) via the multi-component synthesis by the mechanochemical grinding of glycine, benzoyl chloride, an 
aromatic aldehyde and fused sodium acetate in the presence of drops of acetic anhydride. This process is green, 
simple to handle, step and atom efficient, economical and environmentally friendly, because it does not require a 
reaction solvent or heating, we introduced the yield economy [YE] as a metric to assess the conversion efficiency of 
grinding and conventional synthetic reactions of azlactones. The structures of the newly synthesized compounds 
were elucidated by elemental and spectral analyses.

Conclusion:  In conclusion, we have developed a simple, efficient and eco-friendly strategy for facile synthesis of 
azlactones. The key advantages of this strategy, over conventional approach, include its simple, solvent free condi‑
tions, as well as its facile work-up, high yield economy and environmental friendliness. It is also successful in achiev‑
ing three of the green chemistry objectives of a solvent free operation, high atom economy and step efficient. Thus, 
combining the features of both economic and environmental advantages.
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Background
There have been several major advances in synthetic 
organic chemistry during the last decade, includ-
ing multicomponent [1], mechanochemical [2], green 
[3], combinatorial [4] and bio-organic syntheses [5]. 
Indeed, the development of eco-friendly, solvent-free 

multicomponent approaches has opened the door for the 
development of rapid and efficient one-step procedures 
to synthesize a wide range of complex targets. In contrast 
to multicomponent synthesis, mechanochemical synthe-
sis has received considerable attention as a green chem-
istry approach for the synthesis of organic compounds 
because it operates under solvent-free conditions with 
high atom efficiency, low energy requirements and a fac-
ile work-up. Mechanochemical synthesis (i.e., the grind-
stone technique) is based on the idea that the grinding 
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together of the crystals of two different reagents in a pes-
tle and mortar leads to the formation of local heat, which 
mediates a reaction between these two materials. These 
reactions are easy to handle and are generally considered 
to be more economical and environmentally friendly 
(i.e., greener) than conventional techniques. The grind-
ing required in these reactions to generate the necessary 
local heat is achieved by simply mixing the individual 
components, either neat or in the presence of a very 
small amount of liquid phase (liquid-assisted grinding), 
in a pestle and mortar [6, 7]. The only major limitation of 
this technique is that it cannot be applied to shock-sensi-
tive materials.

Mechanochemical heterocyclic chemistry (MHC) has 
recently attracted considerable interest from heterocyclic 
chemists, who have used this technique to achieve the 
green synthesis of several heterocyclic systems, including 
pyrazolines [8], aurones [9], bis(indol-3-yl)methanes [10], 
1,3,4-oxadiazoles [11], pyrimidones [12], coumarins [13, 
14], flavones [14], benzodiazepines [15], 1,6-naphthyridin 
[16] and 1,3,4-thiadiazoles [17]. Pravin and co-workers 
compared the mechanochemical synthesis of pyrazolyl 
chalcones with a conventional synthetic method. They 
found that the former of these two required shorter reac-
tion times, afforded higher yields of the desired chalcone 
products and proceeded smoothly at room temperature 
[18]. The success of the mechanochemical approach used 
in this case was attributed to the fact that solid-state reac-
tions occur more efficiently and selectively than solution-
phase reactions, because the molecules in a crystal lattice 
are arranged more tightly and regularly than those in the 
liquid state [19]. Based on the many benefits reported for 
MHC, we envisaged that this approach could be used to 
provide facile access to azlactones as a greener, more effi-
cient and yield-economic strategy compared with con-
ventional methods.

4-Arylidene-2-phenyl-5(4H)oxazolones, which are 
also known as azlactones, are important intermediates 
in the synthesis of several small molecules, including 
amino acids [20–23], peptides [24, 25], 2,2-disubsituted-
2H-oxazol-5-ones with total region and stereo control 
[26]. Compounds belonging to this structural class may 
also be used as precursors for other heterocyclic sys-
tems [27]. Furthermore, oxazolones have been reported 
to exhibit a wide range of pharmaceutical properties 
[28], including anticancer [29], antimicrobial, antitumor 
[30], anti-inflammatory [31], antiviral [32] and anti-HIV 
[33] activities. These compounds can also be used as 
molecular photo switches [34] and optical sensors for pH 
measurements [35], as well as biosensor-coupling and 
photosensitive composition devices for protein analy-
sis [36]. Based on their importance, the development of 
new methods for the facile and environmental friendly 

synthesis of azlactones is highly desired. Several methods 
have been reported for the synthesis of azlactones. For 
example, Heravi and co-workers reported the synthesis 
of a series of azlactones by the condensation of hippuric 
acid with various aromatic aldehydes in the presence of 
acetic anhydride under ultrasonic irradiation conditions 
[37]. Azlactones may also be synthesized under sol-
vent-free conditions using Nano silica-supported tung-
stophosphoric acid [38] or using calcium acetate [39], 
aluminum oxide [40], and neutral alumina [41] under 
microwave irradiation conditions or organic–inorganic 
hybrid polyoxometalates as a catalyst [42], ytterbium (III) 
triflate as a catalyst [43], under free-solvent. The most 
commonly used route for the synthesis of Azlactones is 
the Erlenmeyer method [44], which involves the conden-
sation of aldehydes with hippuric acid in the presence of 
sodium acetate and acetic anhydride.

It is noteworthy that all of these previously reported 
methods for the synthesis of azlactones start from hippu-
ric acid [37–44], which is prepared in a separate reaction 
by the benzoylation of glycine, as shown in (Scheme 1).

It was envisaged that a mechanochemical approach 
could be used to develop a solvent-free process for the 
multicomponent synthesis of azlactones directly from 
glycine in one step.

Results and discussion
In this study, we report the development of a solvent-
free mechanochemical approach for the multicomponent 
synthesis of a series of azlactones in one step (Scheme 2). 
Benzoyl chloride, glycine, various aromatic aldehydes and 
fused sodium acetate were mixed under mechanochemi-
cal conditions in a porcelain mortar at room temperature 
in the presence of few drops of acetic anhydride to afford 
azlactones 2a–i. These azlactones were isolated in excel-
lent yields and with high purity. These compounds were 
also prepared using a conventional solution phase tech-
nique. Notably, our newly developed mechanochemical 
technique gave much higher yields compared with the 
conventional method (Table 1). This new process is sim-
ple and provides rapid, efficient and economical access 
to a wide range of azlactones under solvent-free and 
mild conditions, making it consistent with some of the 
key principles of green chemistry. The structures of the 
synthesized azlactones 2a–i were conformed based on a 
comparison of their m.p., mixed. m.p. TLC, IR, UV, 1H 
NMR and MS data with those from the literature.

We initially compared our mechanochemical approach 
for the synthesis of azlactones with a conventional 
approach in terms of their atom economy. The atom 
economy (AE) [45] relates to the efficiency with which 
the atoms in the starting materials of a reaction are incor-
porated into the desired product (i.e., how efficiently a 
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particular reaction makes use of the reactant atoms). 
However, the AE values were the same for the mechano-
chemical and conventional procedures because we used 
two alternative reaction conditions to obtain the same 
target compounds.

We consequently introduced yield economy (YE) as a 
metric to assess the conversion efficiency of these two 
different approaches. The YE basically measures how 
much yield (%) of the desired product is obtained over a 
certain reaction time [i.e., yield(%)

/

reaction time(min)

]. A higher YE is therefore indicative of a higher level of 
conversion, a much more efficient chemical process and 
more economical reaction. The YE of a reaction can be 
calculated using the following equation.

 YE were used in this study to provide a decisive assess-
ment of the yields obtained under the mechanochemical 
and conventional conditions (Table 1). Assessing a chem-
ical reaction based entirely on its percentage yield can 

YE = Yield (%)
/

Reaction time(min)
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be misleading. For example, the yields for compound 2a 
under the mechanochemical and conventional conditions 
were 90 and 72 % respectively, with a difference of only 
18 %. However, the YE values for the mechanochemical 
and conventional conditions were 22.6 and 0.6, respec-
tively, representing a much bigger difference and high-
lighting the superiority of the former approach. Similar 
trends were observed for all of the other compounds in 
the series. The YE values of azlactones 2a–i are listed in 
Table 1.

N

O

C

O

Ph

2a-iAr

H

Comparison of [Y(%)
/

YE] of solvent free Grinding 
technique with other solvent free literature techniques 
(Table 2) revealed that:

–– Yield (%) [G] of compounds 2b–c and 2e are higher 
than the calculated YE* of the same compounds syn-
thesized by other solvent free techniques

–– Yield economy [G] of compounds 2a–c and 2e–g are 
higher than the calculated YE* of the same compounds 
synthesized by other solvent free techniques.

Experimental section
Methods
All of the melting points were determined in open cap-
illary tubes on a Gallenkamp melting point appara-
tus (London, UK). These data have been presented as 
the uncorrected values. Ultraviolet (UV) spectra were 
recorded on a JNWAY 6505 UV/vis spectrometer (Staf-
fordshire, UK) in dimethylformamide (DMF). IR spectra 
were recorded as KBr disks on a PerkinElmer RXIFTIR 
spectrometer (Waltham, MA, USA). 1H NMR spectra 
were measured on a Varian Gemini 300 MHz spectrom-
eter (Palo Alto, CA, USA). Chemical shifts (δ) have been 
expressed in ppm downfield from TMS, which was used 

Table 1  Physical data of the synthesized Azlactones 2a-i

G grinding, Conv conventional, YE yield economy
a  General conditions for the mechanochemical procedure: glycine (1.0 mmol) aromatic aldehyde (1.0 mmol), benzoyl chloride (1.0 mmol), fused sodium acetate 
(1.0 mmol) and acetic anhydride (cat.) were grinded in a mortar and pestle at room temperature for 4–13 min
b  General conditions for the conventional procedure: N-benzoyl glycine (1.2 mmol), aromatic aldehyde (1.0 mmol), acetic anhydride (3.0 mmol) and fused sodium 
acetate (1.5 mmol) on a hot plate to liquefaction, followed by heating on a water path for 2 h

No Ar m.p. (°C) found/reported Yield (%) G.a/Conv.b Time (min) G.a/Conv.b (YE) G./Conv.

2a C6H5 166–168/169 [40] 90/72 4/120 22.6/0.6

2b 4-MeOC6H4 155–156/154 [28] 93/70 5/120 18.6/0.58

2c 4-ClC6H4 189–190/190 [28] 96/69 10/120 9.6/0.57

2d 4-Me2NC6H4 205–206/208 [28] 91/69 12/120 7.6/0.57

2e 4-NO2C6H4 238–240/241 [28] 96/68 10/120 9.6/0.56

2f 2-ClC6H4 150–152/153 [28] 88/72 12/120 7.3/0.6

2g  2-BrC6H4 144–145/144 [27] 87/68 13/120 6.7/0.56

2h  3,4-(OMe)2C6H3 148–150/152 [27, 40] 87/70 8/120 9.7/0.58

2i –CH=CHC6H5 130–131/131 [40] 79/71 6/120 13.2/0.59

Table 2  Yield (%)/YE of  solvent free G and  other solvent 
free Lit. techniques

G Grinding, YE yield economy
a  YE calculated yield economy on the bases of lit. Y (%)

No. Yield (%/G) (YE/G) Yield (%) Lit. (YE)a

2a 90 22 97 [39] 19.4

2b 93 18.6 90 [38] 6.1

2c 96 9.6 91 [38] 2.0

2d 91 7.6 95 [42] 19

2e 96 9.6 85 [38] 1.4

2f 88 7.3 92 [42] 2.0

2g 87 6.3 91 [42] 2.0

2h 87 9.3 94 [39] 31.3

2i 79 13.2 91 [39] 30.3



Page 5 of 7Fahmy et al. Chemistry Central Journal  (2016) 10:59 

as an internal standard. 1H NMR spectra were recorded 
in DMSO-d6 and the coupling constants (J) reported in 
Hz. Mass spectra were recorded on a Shimadzu GC–MS 
QP 1000 EX system (Tokyo, Japan) operating at 70  eV. 
All of the reactions were monitored by thin-layer chro-
matography (TLC) using aluminum TLC sheets coated 
with silica gel F254 (Merck, Darmstadt, Germany). TLC 
was also used to assess the purity of the synthesized 
compounds.

General procedure for the mechanochemical formation 
of azlactones 2a–i
A mixture of glycine (1.0  mmol), aromatic aldehyde 
(1.0  mmol), benzoyl chloride (1.0  mmol) and fused 
sodium acetate (1.0  mmol) was mixed in a porcelain 
mortar and pestle in the presence of a few drops of acetic 
anhydride for a few minutes (Table 1). Upon completion 
of the reaction, as determined by TLC, the reaction mix-
ture turned to a yellow solid, which was washed with cold 
water and recrystallized from ethanol to give the desired 
azlactone. The structures of the azlactones were con-
firmed based on a comparison of their m.p., mixed. m.p., 
TLC, IR, UV, 1H NMR and MS data with those from the 
literature.

General procedure for the conventional formation 
of azlactones 2a‑i
A mixture of N-benzoyl glycine (hippuric acid) 
(1.2 mmol), aromatic aldehyde (1.0 mmol), acetic anhy-
dride (3.0  mmol) and fused sodium acetate (1.5  mmol) 
was heated on a hot plate to liquefaction, and the result-
ing mixture was then heated on a water path for 2  h. 
Upon completion of the reaction, as determined by TLC, 
the mixture was cooled to room temperature and treated 
with EtOH (5  ml) [27, 28, 40]. The ethanolic mixture 
was then held in a refrigerator at 4°C overnight, and the 
resulting precipitate was collected by filtration. The solid 
product was then washed with hot water and air-dried 
at room temperature for 2 h before being recrystallized 
from ethanol to give the corresponding azlactones 2a–i.

4‑Benzylidene‑2‑phenyl‑5(4H)‑oxazolone (2a)
UV (DMF): λmax 300 (log ε =  3.95) nm. IR (KBr): 1793, 
1768 (C=O), 1652 (C=N), 1594 (C=C).1H NMR 
(300 MHz, DMSO-d6): δ 7.35 (s, 1H, CH=C), 7.33–7.75 
(m, 6H, Ar–H), 8.13 (d, 2H, J  =  7.5  Hz), 8.30 (d, 2H, 
J = 7.8 Hz). MS (ESI) m/z (%): 249 (M+, 100).

(E/Z)‑4‑(4‑Methoxybenzylidene)‑2 phenyl‑5(4H)‑oxazolone 
(2b)
UV (DMF): λmax 290 (log ε  =  3.93) nm.IR (KBr): 
1788, 1769 (C=O), 1653 (C=N), 1600 (C=C).1H 

NMR (300  MHz, DMSO-d6): δ 3.88 (s, 3H, CH3), 7.11 
(d, 2H, J  =  9.0  Hz), 7.64 (d, 2H, J  =  7.5  Hz), 7.69 (d, 
1H, J =  6.9  Hz), 8.11 (d, 2H, J =  6.9  Hz), 8.30 (d, 2H, 
J = 9.0 Hz). For the E-isomer (71 %): 7.33 (s, 1H, CH=C), 
for the Z-isomer (29  %): 7.60 (s, 1H, CH=C). MS (ESI) 
m/z (%): 279 (M+, 88), 105 (100).

(E/Z)‑4‑(4‑Chlorobenzylidene)‑2‑phenyl‑5(4H)‑oxazolone (2c)
UV (DMF): λmax 252 (log ε =  4.00) nm.IR (KBr): 1795, 
1766 (C=O), 1653 (C=N), 1585 (C=C). 1H NMR 
(300  MHz, DMSO-d6): δ 7.50 (d, 1H, J =  7.5  Hz), 7.61 
(d, 1H, J  =  8.7  Hz), 7.66 (d, 1H, J  =  7.5  Hz), 7.73 (d, 
1H, J =  7.5  Hz), 7.94 (d, 1H, J =  7.5  Hz), 8.14 (d, 2H, 
J =  7.5  Hz), 8.33 (d, 2H, J =  8.7  Hz). For the E-isomer 
(86 %): 7.37 (s, 1H, CH=C), for the Z-isomer (14 %): 7.47 
(s, 1H, CH=C). MS (ESI) m/z (%): 285 (M+. + 2, 30), 283 
(M+, 90), 105 (100).

4‑(4‑(Dimethylamino)
benzylidene)‑2‑phenyl‑5(4H)‑oxazolone (2d)
UV (DMF): λmax 290 (log ε =  3.98) nm. IR (KBr): 1758, 
1763 (C=O), 1646 (C=N), 1605, 1580 (C=C).1H NMR 
(300 MHz, DMSO-d6): δ 3.07 (s, 6H, 2CH3), 6.83 (d, 2H, 
J = 9.0 Hz), 7.33 (s, 1H, CH=C), 7.58–7.66 (m, 3H), 8.06 
(d, 2H, J = 6.6 Hz), 8.17 (d, 2H, J = 8.7 Hz). MS (ESI): m/z 
(%): 292 (M+, 91), 105 (100).

4‑(4‑Nitrobenzylidene)‑2‑phenyl‑5(4H)‑oxazolone (2e)
UV (DMF): λmax 252 (log ε  =  4.00) nm.IR (KBr): 
1750, 1686 (C=O), 1620 (C=N), 1585 (C=C). 1H 
NMR (300  MHz, DMSO-d6): δ 7.26–7.58 [m, 6H, 
(5Ar–H +  1CH=C), 7.74 (d, 2H, J =  7.5  Hz), 7.88 (d, 
2H, J = 7.2 Hz). MS (ESI) m/z (%): 294.15 (M+, 0.5), 105 
(100).

4‑(2‑Chlorobenzylidene)‑2‑phenyl‑5(4H) oxazolone (2f)
UV (DMF): λmax 300 (log ε =  3.95) nm. IR (KBr): 1794, 
1772 (C=O), 1687, 1652 (C=N), 1601 (C=C). 1H NMR 
(300 MHz, DMSO-d6): δ 7.46 (s, 1H, CH=C), 7.50 (d, 2H, 
J = 7.8 Hz), 7.57–7.67 (m, 3H), 7.94 (d, 2H, J = 7.2 Hz), 
8.15 (d, 1H, J = 6.9 Hz), 8.88 (d, 1H, J = 8.1 Hz). MS (ESI) 
m/z (%): 285 (M+.+2, 7), 283 (M+, 21), 105 (100).

4‑(2‑Bromobenzylidene)‑2‑phenyl‑5(4H)‑oxazolone (2 g)
UV (DMF): λmax 297 (log ε =  3.96) nm.IR (KBr): 1794, 
1770 (C=O), 1650 (C=N), 1583, 1552 (C=C); 1H NMR 
(300 MHz, DMSO-d6): δ 7.40–7.51(m, 2H), 7.57–7.67 (m, 
3H, (2Ar–H +  1CH=C)), 7.74 (d, 1H, J =  7.5 Hz), 7.80 
(d, 1H, J = 8.1 Hz), 7.94 (d, 1H, J = 7.2 Hz), 8.14 (d, 1H, 
J = 7.2 Hz), 8.86 (d, 1H, J = 8.1 Hz). MS (ESI) m/z (%): 
328 (M+, 5.6), 330 (M+ + 2, 4.8), 327 (27.3), 329 (26.9), 
248 (59), 105 (100).
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4‑(3,4‑Dimethoxybenzylidene)‑2‑phenyl‑5(4H)‑oxazolone 
(2 h)
UV (DMF): λmax 280 (log ε =  3.62) nm.IR (KBr): 1789, 
1766 (C=O), 1649 (C=N), 1596, 1578 (C=C). 1H NMR 
(300 MHz, DMSO-d6): δ 3.86 (s, 3H, OMe), 3.88 (s, 3H, 
OCH3), 7.13 (d, 1H, J =  8.7  Hz), 7.32 (s, 1H, CH=C), 
7.60–7.73 (m, 3H), 7.81 (d, 1H, J = 9.0 Hz), 8.08–8.14 (m, 
3H). MS (ESI) m/z (%): 309.15 (M+, 6.0), 105 (100).

2‑Phenyl‑4‑(3‑phenylallylidene)‑5(4H)‑oxazolone (2i)
UV (DMF):λmax 300 (log ε  =  3.95) nm.IR (KBr): 1785, 
1747 (C=O), 1640 (C=N), 1595, 1574 (C=C). 1H 
NMR (300  MHz, DMSO-d6): δ 7.27 (d, 1H, CH=C, 
J = 11.4 Hz), 7.36–7.42 (m, 4H, Ar–H), 7.57–7.68 (m, 7H, 
(6 Ar–H + 1 CH=C)), 8.08 (d, 1H, CH=C, J = 12.0 Hz). 
MS (ESI) m/z (%): 275.10 (M+, 12.57), 105 (100).

Conclusion
In summary, we have developed a simple, efficient and 
eco-friendly method for the facile multi-component syn-
thesis of azlactones using a solvent-free mechanochemi-
cal approach. The key advantages of this strategy over 
conventional approaches include its simple, solvent-free 
conditions, as well as its facile work-up, high yield econ-
omy and environmental friendliness.
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