
Lei et al. Chemistry Central Journal  (2016) 10:40 
DOI 10.1186/s13065-016-0186-8

RESEARCH ARTICLE

Synthesis and fungicidal activity 
of pyrazole derivatives containing 
1,2,3,4-tetrahydroquinoline
Peng Lei1, Xuebo Zhang1, Yan Xu1, Gaofei Xu1, Xili Liu2, Xinling Yang1, Xiaohe Zhang1 and Yun Ling1*

Abstract 

Background: Take-all of wheat, caused by the soil-borne fungus Gaeumannomyces graminis var. tritici, is one of the 
most important and widespread root diseases. Given that take-all is still hard to control, it is necessary to develop new 
effective agrochemicals. Pyrazole derivatives have been often reported for their favorable bioactivities. In order to dis-
cover compounds with high fungicidal activity and simple structures, 1,2,3,4-tetrahydroquinoline, a biologically active 
group of natural products, was introduced to pyrazole structure. A series of pyrazole derivatives containing 1,2,3,4-tet-
rahydroquinoline were synthesized, and their fungicidal activities were evaluated.

Results: The bioassay results demonstrated that the title compounds displayed obvious fungicidal activities at a 
concentration of 50 μg/mL, especially against V. mali, S. sclerotiorum and G. graminis var. tritici. The inhibition rates of 
compounds 10d, 10e, 10h, 10i and 10j against G. graminis var. tritici were all above 90 %. Even at a lower concen-
tration of 16.7 μg/mL, compounds 10d and 10e exhibited satisfied activities of 100 % and 94.0 %, respectively. It is 
comparable to that of the positive control pyraclostrobin with 100 % inhibition rate.

Conclusion: A series of pyrazole derivatives containing 1,2,3,4-tetrahydroquinoline were synthesized and their 
structures were confirmed by 1H NMR, 13C NMR, IR spectrum and HRMS or elemental analysis. The crystal structure of 
compound 10g was confirmed by X-ray diffraction. Bioassay results indicated that all title compounds exhibited obvi-
ous fungicidal activities. In particular, compounds 10d and 10e showed comparable activities against G. graminis var. 
tritici with the commercial fungicide pyraclostrobin at the concentration of 16.7 μg/mL.
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Background
Wheat (Triticum aestivum) is one of the most important 
crops in the world. Take-all of wheat, caused by the soil-
borne fungus Gaeumannomyces graminis var. tritici, is 
one of the most serious and widespread root diseases [1, 
2]. The pathogen infects the roots of susceptible plants, 
resulting in black necrotic, plant stunting, white heads, 
and etc. [3, 4]. It reduces the grain yield from 20 % up to 
50 %. Unfortunately, the control of take-all is still a huge 
problem. And the application of agrochemicals is cur-
rently the most effective method [5]. However, existing 

chemical control agents, such as silthiopham, were not 
financially affordable for the control of wheat take-all [6]. 
Hence, it is necessary to develop effective and inexpen-
sive agents to replace the conventional agrochemicals.

Introducing active groups of natural products is an 
effective and important method for the discovery of new 
agrochemicals [7, 8]. 1,2,3,4-tetrahydroquinoline (THQ), 
widely existing in natural products [9, 10], has been often 
reported for its favorable bioactivities, such as anticancer 
[11, 12], antibacterial [13, 14], antifungal [15, 16] activi-
ties, and so on. For example, aspernigerin (Fig.  1), iso-
lated from the extract of a culture of Aspergillus niger 
IFB-E003, exhibited favorable cytotoxic to the tumor cell 
lines [17], and certain fungicidal activities, insecticidal 
activities and herbicidal activities [18, 19].
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In recent years, pyrazole derivatives have attracted 
tremendous attention owing to their excellent bioactivi-
ties [20–22]. Pyraclostrobin (Fig. 1) discovered by BASF 
is a commercial fungicide containing pyrazole structure. 
It came to the market in 2002. Given its wide fungicidal 
spectrum, pyraclostrobin had achieved a total sale of 
$800 million in 2012, ranked the second in the world. 
[23]. Besides, pyrazole derivatives were also reported to 
possess insecticidal activities [24, 25], herbicidal activi-
ties [26], and anticancer activities [27, 28].

It is an effective method to develop new green agro-
chemicals by introducing active groups of natural 
products to known active sub-structures. As above 
mentioned, THQ is an important active group of natu-
ral products. In order to find highly biologically active 
lead compounds with simple structures, THQ was intro-
duced to the known active sub-substructure of pyrazole 
compounds using intermediate derivatization methods 
(IDM) [29]. A series of pyrazole derivatives containing 
1,2,3,4-tetrahydroquinoline were synthesized, and their 
activities were evaluated in this study. Biological assays 
revealed that some compounds exhibited good fungicidal 
activities. Especially, they displayed excellent activities 
against G. graminis var. tritici.

Results and discussion
Synthesis
The synthetic procedure of intermediates 3a–3n is 
shown in Scheme 1 [30]. By using Claisen condensation 
in the presence of sodium ethoxide, substituted ketone 
1 reacted with diethyl oxalate to afford the β-ketoester 
intermediate 2. With glacial acetic acid acidification, 
compound 2 was reacted with substituted hydrazine via 
Knorr reaction to obtain the intermediates 3a–3n. This 
method has two advantages. Firstly, ethyl 5-pyrazolecar-
boxylate compounds were synthesized simply through a 
“one-pot” process. Secondly, the reaction proceeds well 
at ambient temperature.

Synthesis of compounds 3o–3p is carried out follow-
ing a different method [31, 32] and the procedure was 
shown in Scheme 2. 2,3-dichloropyridine 4 reacted with 
hydrazine hydrate (80  %) to yield the intermediate 5, 
which underwent cyclization with diethyl maleate to give 
the intermediate 6. The reaction of 6 with phosphorus 

oxychloride or phosphorus oxybromide afforded the 
chlorine or bromine substituted compound 7, which was 
then oxidized to give the intermediates 3o–3p.

General synthetic procedure of title compounds 10a–
10p is shown in Scheme  3. The saponification of the 
ester intermediate 3 afforded the substituted-1H-pyra-
zole-5-carboxylic acid 8 [33]. The title compounds 10 
were prepared by the amidation of compounds 9 and 
1,2,3,4-tetrahydroquinoline (THQ) [34].

The structures of all the title compounds were con-
firmed by 1H NMR, 13C NMR, IR spectra and HRMS or 
elemental analysis and the relevant data could be found 
in the Additional file 1. Compound 10a was taken as an 
example to analyze the 1H NMR spectra data. Four pro-
tons of the benzene ring were observed at δ 7.18–6.87. A 
single peak at δ 5.76 was due to the proton at the 4-posi-
tion of the parazole ring. Two protons at the 2-position of 
THQ were observed at δ 3.90 with J = 6.5 Hz as a triple 
peak, and the other triple peak at δ 2.82 with J = 6.6 Hz 
was due to the protons at the 4-position of THQ. Two 
protons at the 3-position of THQ was showed at δ 2.03 
with J = 6.6 Hz as pentaploid peaks. The chemical shifts 
as single peaks were observed at δ 3.87 and 2.15 due to 
the protons of N-CH3 and CH3 at the 3-position of the 
parazole ring respectively.

In order to further confirm the structure of the title 
compounds, a single crystal of 10g (R1 = Ph, R2 = Me) 
was prepared for the X-ray diffraction. The single crys-
tal was obtained by slow evaporation of a solution of 
compound 10g in ethyl acetate at room temperature. 
As shown in Fig. 2, the crystal data for 10g: orthorhom-
bic, space group P212121 (no. 19), a  =  8.3512(9)  Å, 
b = 12.5600(13) Å, c = 15.3638(16) Å, V = 1611.5(3) Å3, 
Z  =  4, T  =  180.01(10)  K, μ(Mo Kα)  =  0.083  mm−1, 
Dcalc  =  1.308  g/mm3, 5965 reflections measured 
(5.858  ≤  2Θ  ≤  52.042), 3141 unique (Rint  =  0.0292) 
which were used in all calculations. The final R1 was 
0.0369 (I  >  2σ(I)) and wR2 was 0.0852. Crystallographic 
data have been deposited with the Cambridge Crystallo-
graphic Data Centre as supplementary publication num-
ber CCDC 1441750. For more information on crystal 
data, see the Additional files 2 and 3.

Biological activity
The in vitro fungicidal activities of all the title compounds 
have been determined against seven pathogenic fungi at 
the concentration of 50 μg/mL, and the mycelium growth 
rate method was used [35, 36]. Pyraclostrobin (Fig.  1) 
was assessed as a positive control. The bioassay results, 
illustrated in Table 1, indicated that the title compounds 
exhibited obvious fungicidal activities. Most of them dis-
played satisfied activities against V. mali, S. sclerotiorum 
and G. graminis var. tritici. Particularly, compounds 10d, 
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Fig. 1 The structures of aspernigerin and pyraclostrobin
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10e, 10i and 10j showed inhibitory activities of more 
than 85  % against V. mali. Compounds 10d, 10e, 10f, 
10h, 10i, 10j and 10l also demonstrated good activities 
against S. sclerotiorum. Especially, five title compounds 
(10d, 10e, 10h, 10i and 10j) exhibited striking activities 
against G. graminis var. tritici, with more than 90 % inhi-
bition rates.

Primary structure activity relationships (SAR) revealed 
that the substituents played an important role in fungi-
cidal activities. (1) When substituent R1 was methyl, com-
pounds with R2 as (substituted) phenyl exhibited better 
activities than those with R2 as alkyl (10d, 10e, 10f > 10a, 
10b, 10c). (2) When R1 was phenyl, the fungicidal activi-
ties increased with the increase of the carbon number in 
the alkyl chain of the R2 moiety (10g < 10h < 10i ≈ 10j). 
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Scheme 1 Synthetic route of intermediates 3a–3n. Reagents and conditions: (a) CH3CH2ONa, CH3CH2OH, diethyl oxalate, room temperature (r.t.), 
2 h; (b) glacial acetic acid, r.t., 0.5 h; substituted hydrazine, r.t., overnight
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10 min, then diethyl maleate, reflux, 30 min; (c) POCl3 or POBr3, CH3CN, reflux, 5 h; (d) H2SO4, CH3CN, r.t., 10 min, then K2S2O8, reflux, 4 h

a b c

3 8 9 10

O
N
N

R1

R2

EtO

O
N
N

R1

R2

HO

O
N
N

R1

R2

Cl

O

N N
N

R1

R2

10a: R1 = Me, R2 = Me 10e: R1 = Me, R2 = 4-OMePh 10i: R1 = Ph, R2 = n-Pr 10m: R1 = 2-ClPh, R2 = 4-ClPh

10b: R1 = Me, R2 = Et 10f: R1 = Me, R2 = 4-ClPh 10j: R1 = Ph, R2 = i-Pr 10n: R1 = t-Bu, R2 = Me

10c: R1 = Me, R2 = i-Pr 10g: R1 = Ph, R2 = Me 10k: R1 = Ph, R2 = Ph 10o: R1 = 3-ClPy-2-yl, R2 = Cl

10d: R1 = Me, R2 = Ph 10h: R1 = Ph, R2 = Et 10l: R1 = 2-ClPh, R2 = Me 10p: R1 = 3-ClPy-2-yl, R2 = Br

Scheme 3 Synthetic route of the target compounds 10. Reagents and conditions: (a) NaOH aqueous solution, r.t., 3 h, then HCl acidification; (b) 
SOCl2, toluene, reflux, 3 h; (c) 1,2,3,4-tetrahydroquinoline, pyridine, CH2Cl2, r.t., 1 h

Fig. 2 The X-ray crystal structure of 10g
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However, fungicidal activities decreased dramatically 
when R1 and R2 were both phenyl (10k). (3) It was not 
beneficial to increase their fungicidal activities when R1 
was substituted pyridyl (10o and 10p).

In particular, compounds 10d (R1 = Me, R2 = Ph), 10e 
(R1 = Me, R2 = 4-OMePh), 10i (R1 = Ph, R2 = n-Pr) and 
10j (R1 = Ph, R2 = i-Pr) exhibited good activities against 
V. mali, S. sclerotiorum and G. graminis var. tritici with 
inhibition rates of more than 80 %. Compounds 10d and 
10e showed comparable activities against V. mali and 
G. graminis var. tritici with the commercial fungicide 
pyraclostrobin.

In the further study, fungicidal activities against G. 
graminis var. tritici of compounds 10d, 10e, 10h, 10i 
and 10j were evaluated at lower concentrations (Table 2). 
Obviously, the result revealed a dosage-dependent rela-
tionship. Compounds 10d and 10e still exhibited sat-
isfied activities with the inhibition rates of 100  % and 
94.0 % at the concentration of 16.7 μg/mL, respectively, 
which is comparable to that of the positive control using 
pyraclostrobin. Unfortunately, their fungicidal activities 
decreased dramatically at the concentration of 11.1  μg/
mL.

Experimental
Chemistry
Melting points of all compounds were determined on 
an X-4 binocular microscope (Fukai Instrument Co., 

Beijing, China) without calibration. NMR spectra were 
acquired with a Bruker 300  MHz spectrometer with 
CDCl3 as the solvent and TMS as the internal standard. 
Chemical shifts are reported in δ (parts per million) val-
ues. High resolution mass spectrometry (HRMS) data 
were obtained on an FTICR-MS Varian 7.0T FTICR-
MS instrument. Elemental analysis was carried out on 
a Vario EL III elemental analyzer. All the reagents were 
obtained commercially and used without further puri-
fication. Column chromatography purification was 
carried out by using silica gel. The synthesis of interme-
diates and title compounds can be found in the Addi-
tional file 1.

Antifungal biological assay
All the target compounds have been evaluated for their 
in  vitro fungicidal activities against seven pathogenic 
fungi, using mycelium growth rate method according to 
the literature [35, 36]. Fungi tested in this article included 
Pythium aphanidermatum, Rhizoctonia solani, Valsa 
mali, Sclerotinia sclerotiorum, Botrytis cinerea, Fusarium 
moniliforme and Gaeumannomyces graminis var. tritici. 
Dimethyl sulfoxide (DMSO) in sterile distilled water 
served as the control. Pyraclostrobin (Fig.  1) containing 
pyrazole structure (Fig.  1) as the commercial fungicide, 
was assessed under the same conditions as a positive 
control. In the preparation, every compound (10  mg) 
was weighted accurately and dissolved in 1  mL DMSO, 

Table 1 Fungicidal activities of title compounds against seven kinds of pathogenic fungi

P. a: Pythium aphanidermatum, R. s: Rhizoctonia solani, V. m: Valsa mali, S. s: Sclerotinia sclerotiorum, B. c: Botrytis cinerea, F. m: Fusarium moniliforme,  
G. g. t: Gaeumannomyces graminis var. tritici

Compd. R1 R2 Fungicidal activity (%)/50 μg/mL

P. a R. s V. m S. s B. c F. m G. g. t

10a Me Me 5.2 19.7 17.8 33.6 6.9 11.8 4.5

10b Me Et 12.9 30.7 14.4 40.1 5.7 15.8 31.7

10c Me i-Pr 12.1 40.6 53.0 72.8 20.8 17.0 8.9

10d Me Ph 35.1 62.2 91.9 92.6 74.1 49.7 100

10e Me 4-OMePh 25.4 63.4 91.5 84.8 61.8 48.5 100

10f Me 4-ClPh 15.3 54.7 57.6 85.3 52.3 27.4 35.7

10g Ph Me 30.6 26.8 23.3 48.4 28.8 22.6 79.0

10h Ph Et 40.3 39.4 65.7 84.3 66.2 48.5 99.1

10i Ph n-Pr 53.6 61.0 86.4 97.2 78.9 54.5 96.1

10j Ph i-Pr 50.4 56.7 86.0 88.0 79.3 50.9 90.1

10k Ph Ph 12.1 33.5 47.5 72.8 37.1 36.2 87.1

10l 2-ClPh Me 20.2 19.7 49.6 88.5 35.1 21.0 78.6

10m 2-ClPh 4-ClPh 4.8 22.4 36.9 47.9 36.7 17.8 76.4

10n t-Bu Me 17.7 24.8 24.6 32.7 24.0 17.0 26.3

10o 3-ClPy Cl 24.2 26.8 39.8 45.6 47.9 27.0 65.7

10p 3-ClPy Br 38.7 39.0 56.8 59.9 42.7 28.6 72.6

Pyraclostrobin – – 47.4 100 89.0 100 84.5 78.5 100
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and then it was mixed with 200 mL potato dextrose agar 
(PDA). As a consequence, they were tested at a concen-
tration of 50  μg/mL. In order to get new mycelium for 
antifungal assay, all fungal species were incubated in PDA 
at 25 ± 1 °C for 1–7 days vary from different fungi. Myce-
lia dishes were cut with a 5 mm in diameter hole punch 
from the prepared edge of culture medium. One of them 
was picked up with a sterilized inoculation needle, and 
then inoculated in the center of the PDA plate aseptically. 
Every treatment repeated three times, and they were 
incubated at 25 ± 1  °C for 1–7 days vary from different 
fungi. All the above was completed in a bioclean environ-
ment. The hypha diameter was measured by a ruler, and 
the data were statistically analyzed. The inhibition rate of 
the title compounds on the fungi was calculated by the 
following formula:

I (%) =  [(C − T)/(C − 5)] × 100, where I is the inhi-
bition rate, C represents the diameter (mm) of fungal 
growth on untreated PDA, and T represents the diameter 
(mm) of fungi on treated PDA.

Conclusion
In summary, a series of pyrazole derivatives containing 
1,2,3,4-tetrahydroquinoline were synthesized and their 
structures were confirmed by 1H NMR, 13C NMR, IR 
and HRMS or elemental analysis. The crystal structure 
of compound 10g was determined by X-ray diffraction. 
Bioassay results indicated that all the title compounds 
exhibited good fungicidal activities. And the substituents 
played an important role in fungicidal activities. In par-
ticular, compounds 10d and 10e with simple structures 
showed comparable activities against G. graminis var. 
tritici to the commercial fungicide pyraclostrobin even 
at the concentration 16.7 μg/mL. These two compounds 
could be valuable leads for further studies.
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