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Abstract 

Background:  1-Octanol solubility is important in a variety of applications involving pharmacology and environmen-
tal chemistry. Current models are linear in nature and often require foreknowledge of either melting point or aqueous 
solubility. Here we extend the range of applicability of 1-octanol solubility models by creating a random forest model 
that can predict 1-octanol solubilities directly from structure.

Results:  We created a random forest model using CDK descriptors that has an out-of-bag (OOB) R2 value of 0.66 and 
an OOB mean squared error of 0.34. The model has been deployed for general use as a Shiny application.

Conclusion:  The 1-octanol solubility model provides reasonably accurate predictions of the 1-octanol solubility of 
organic solutes directly from structure. The model was developed under Open Notebook Science conditions which 
makes it open, reproducible, and as useful as possible.
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Background
The solubility of organic compounds in 1-octanol is 
important because of its direct relationship to the par-
tition coefficient logP used in pharmacology and envi-
ronmental chemistry. Current models that can be used 
to predict 1-octanol solubility include group contribu-
tion methods [1] and often include melting point as a 
descriptor [2–4]. The most recent model by Admire and 
Yalkowsky [4] gives a very useful rule of thumb to predict 
molar 1-octanol solubility from just the melting point

where the compound melting point mp is in °C for com-
pounds that are solid at room temperature and is taken 
to be 25 for liquids. Abraham and Acree [5] refined 
Admire and Yalkowsky’s model by appending the melting 
point term to their linear free energy relationship (LFER) 
model

(1)Log Soct = 0.50− 0.01 · (mp− 25),

where E is the solute excess molar refractivity in units of 
(cm3/mol)/10, S is the solute dipolarity/polarizability, A 
and B are the overall or summation hydrogen bond acid-
ity and basicity, and V is the McGowan characteristic vol-
ume in units of (cm3/mol)/100. The A·B term was added 
to deal with the solute–solute interactions. The coeffi-
cients were found using linear regression against the sol-
ubilities of solutes with known Abraham descriptors with 
the following result:

In the present study, we improve upon previous models by 
creating a nonlinear random forest model using solubil-
ity data from the Open Notebook Science Challenge [6], 

(2)
Log Soct = c+ e · E+ s · S+ a · A+ b · B

+ v · V+ � · A · B+ µ · (mp− 25),

(3)

Log Soct = 0.480− 0.355 · E− 0.203 · S+ 1.521 · A

− 0.408 · B+ 0.364 · V− 1.294 · A · B

− 0.00813 · (mp− 25)

N = 282, SD = 0.47, Training Set R2
= 0.830
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an open data, crowdsourcing research project that col-
lects and measures the solubilities of organic compounds 
in organic solvents created by Jean-Claude Bradley and 
Cameron Neylon. The challenge is, in turn, part of Jean-
Claude Bradley’s UsefulChem program, an open drug dis-
covery project that uses open notebook science [7].

Procedure
The 1-octanol solubility data in this paper were extracted 
from the Open Notebook Science Challenge solubility 
database [8]. We removed all items that were marked 
“DONOTUSE.” For compounds with multiple solubil-
ity values that included values listed in the Abraham 
and Acree paper, we kept only the solubility values that 
were listed in the Abraham and Acree paper. If no Abra-
ham and Acree paper value was available, then we kept 
the Raevsky, Perlovich, and Schaper value instead. In the 
rare case that two Abraham and Acree (or Raevsky, Per-
lovich, and Schaper) paper values were listed for a sin-
gle chemspider ID (CSID), we kept the higher of the two 
values.

The collection and curation process left us with 261 
data points to model, see Additional file 1. The structures 
in our dataset are not very diverse and can be character-
ized, in general, as relatively small organic compounds 
with 1-octanol solubility values between 0.01 and 1.00 M, 
see Figs. 1, 2, and 3.

Two features about the chemical space are immediately 
apparent. Firstly, the dataset has 50 carboxylic acids which 
is a common feature for both Abraham and Acree datasets 
and the Open Notebook Science Challenge dataset where 
the primary focus is on measuring solubilities for the same 
compound in several non-aqueous solvents. While com-
mon in non-aqueous solubility studies, sometimes one 
does have to consider dimerization for carboxylic acids [9]. 
Secondly, there are only 50 compounds that have a single 
Lipinski’s Rules failure (all the rest having zero failures), 
suggesting the dataset could be characterized as drug-like.

Principal component analysis (using the prcomp func-
tion with scale = T) and cluster analysis was performed 
on the dataset of 259 compounds with 86 CDK descrip-
tors using R. The optimal number of clusters was deter-
mined to be 2 by using silhouette analysis (using the pam 
function) on a series ranging from 2 to 20 clusters. The 
silhouettes had an average width of 0.74 for 2 clusters; 
almost double the next closest value [10]. The clusters 
are shown in Fig.  4 below with the x and y axes corre-
sponding to the first and second principal components 
respectively. The first two principal components explain 
36 % of the variance. The first cluster (red) is typified by 
compounds without hydrogen bond acceptors and with 
ALogP >1.56 and with TopoPSA <26.48; 128 out of 157 
compounds match this criteria. The blue cluster is more 
chemically diverse than the red cluster but even so 75 

Fig. 1  Mass distribution of the compounds in our study. 94 % of compounds have a molecular weight between 100 and 400 Da
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of the 102 compounds have ALogP <1.56 and TopoPSA 
>26.48 and at least one hydrogen bond acceptor.

Results and discussion
Modeling
A Random Forest Model is a compilation of uncorrelated 
decision trees used to choose the best case among many. 

Our model used 86 variables in its calculation. In gen-
eral, the less correlated that the variables are, the better 
the results that will occur from a random forest model. A 
higher strength of each individual tree also improves the 
accuracy of the final model—“The strength of each indi-
vidual tree in the forest. A tree with a low error rate is a 
strong classifier. Increasing the strength of the individual 
trees decreases the forest error rate.” [11]. Using a ran-
dom forest model allows us to get out-of-bag (OOB) esti-
mates which are akin to cross-validation and are useful 
for estimating the performance of models created using 
small datasets.

Using Rajarshi Guha’s CDK Descriptor Calculator (v 
1.4.6) [12], we calculated the CDK [13–15] descriptors 
for all the compounds in our refined data file, selecting 
the option to add explicit hydrogens. Once descriptors 
were calculated, we deleted all columns that had a zero 
standard deviation. Additional feature selection was per-
formed by removing columns that were highly correlated 
(0.9 and above). Two compounds were removed as they 
had several “NA” values across multiple descriptors. This 
left us with a dataset of 259 1-octanol solubility values 
with 86 CDK descriptors.

The dataset was then split randomly into training and 
test sets (75:25). Using the random forest model pack-
age (v 4.6-10) in R (v 3.1.2), we created a random forest 

Fig. 2  Solubility distribution of the compounds in our study. 76 % of compounds have solubility values between 0.01 and 1.00 M

Fig. 3  Nearest neighbor Tanimoto similarity
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model using our training set data. This model had an 
OOB R2 value of 0.63 and an OOB MSE of 0.38. This 
model was then used to predict the 1-octanol solubilities 
of the compounds in the test-set resulting in and R2 value 
of 0.54 and a MSE of 0.44, see Fig.  5. The performance 
statistics obtained when using the model to predict test-
set solubilities are comparable to the OOB values. The 
fact that they are slightly smaller may be an artifact of the 
relatively small sizes of the training and test sets and the 
fact that we decided to doing a single taining-set/test-set 
split rather than use cross-validation.

One of the goals of our research was to provide for the 
community a useful web application that can be used to 
predict 1-octanol solubilities directly from structure. To 
accomplish this, we created a random forest model using 
the entire dataset. This model has an OOB R2 value of 
0.66 and an OOB MSE of 0.34.

The following descriptors were identified as important: 
ALogP, XLogP, TopoPSA, nAtomP, MDEC.23, khs.aaCH, 
and nHBAcc, see Fig. 6, which correspond to two models 
for LogP, the predicted topological polar surface area, the 
number of atoms in the longest pi chain, the MDE topo-
logical descriptor, a Kier and Hall smarts descriptor, and 
the number of hydrogen bond acceptors respectively. It 

is not surprising that both ALogP and XLogP would be 
important in predicting 1-octanol solubility, though one 
would have assumed that one of these descriptors would 
have been removed during feature selection as being 
highly correlated with the other. Analyzing the correla-
tion between these two descriptors, we see that they are 
correlated at 0.83 and they both survived as are cutoff 
was at 0.90. This further confirms the problems with cur-
rent Open LogP descriptors implemented in the CDK 
[16].

We tried several other models using the same training 
set/test set split as above with no improvement in perfor-
mance. A linear model (lm) using all 86 CDK descriptors 
had an R2 value of 0.24 and MSE of 0.88; A tuned (using 
tenfold cross validation) support vector machine (epsi-
lon = 0.3, cost = 4.3) had an R2 value of 0.35 and MSE 
of 0.38; and an optimized (using the train command in 
the caret package) artificial neural network model (nnet) 
had an R2 value of 0.36 and MSE of 0.74. Thus the ran-
dom forest model seems the best model for the current 
dataset.

Previously published models only report the training 
set statistics, so in order to directly compare our model 
with previous models we used our full random forest 

Fig. 4  Chemical space of compounds naturally separate into two distinct clusters
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Fig. 5  Predicted vs. measured solubility values for the randomly selected test-set coloured by AE

Fig. 6  Random forest model variable importance
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model to predict the solubilities of the entire dataset, 
see Fig.  7. For the training set, the model has an R2 
value of 0.94 and a MSE of 0.06. Abraham and Acree’s 
recommended Eq.  (3), if all necessary descriptors 
are available, for estimations of log Soct has a training 
set R2 value of 0.83 [5] which is lower than our value. 
Our model also does not require a measured melting 
point. This makes our model, even with the modest 
OOB R2 value of 0.66, superior to all others previously 
published.

In general, we expect the performance of our model to 
be better for compounds similar to those in the training 
set, apart from obvious outliers. However, there was no 
statistically significant performance differential between 
the interior and the periphery of the chemical space as 
has been found previously for other properties we have 
modeled using similar techniques [17]. We used the 
free-to-use DMax Chemistry Assistant Software [18] 
to help discover regions of the chemical space where 
our random forest model performs poorly (and con-
versely, well). Interestingly, the only statistically note-
worthy (p ~ 0.1) finding is that the model performance 
is dependent upon the solubility values themselves; 
with the model performing well for compounds with 

solubility values over 0.01  M and performing poorly 
for compounds with solubility values less than 0.01 M. 
This suggests that the solubility data is comparatively 
not as reliable for compounds with solubility values less 
than 0.01  M and that using the model to predict solu-
bilities of compounds that have low solubilities should 
be done with caution. No other statistically significant 
or noteworthy differences in model performance were 
found based on both physical properties and structure/
scaffold.

The data collection, curation, and modeling were all 
performed under Open Notebook Science (ONS) condi-
tions. Additional modeling details, including our R code, 
can be found on the Open Notebook page [19]. We have 
deployed our model as a Shiny application [20].

Conclusions
We have developed a random forest model for 1-octanol 
solubility that has an OOB R2 value of 0.66 and an aver-
age absolute error of 0.34 that performs better than any 
other currently published model. Our model makes 
1-octanol solubility predictions directly from struc-
ture without having to know the solute’s melting point 
or aqueous solubility. This makes our model the leading 

Fig. 7  Training set chemical space where red indicates poor model performance
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open model for predicting 1-octanol solubilities for a 
variety of applications.
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