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Abstract

Background: Lead is a heavy toxic metal element in biological systems and is one of the major pollutants as a
result of its widespread use in industries. In spite of its negative roles the coordination chemistry of Pb(ll)
complexes is a matter of interest. The N,N"-bidentate aromatic bases such as BPY,4-BPY and PHEN

(BPY = 2,2'bipyridine, 4-BPY = 4,4"-dimethyl-2,2"-bipyridine, PHEN = 1,10-Phenanthroline) are widely used to build
supramolecular architectures because of their excellent coordinating ability and large conjugated system that can
easily form 7= interactions among their aromatic moieties. A series of novel Pb(ll) complexes in concert with
5-CTPC, 5-BTPC (5-CTPC = 5-chlorothiophen-2-carboxylate, 5-BTPC = 5-bromothiophen-2-carboxylate) and
corresponding bidentate chelating N.N' ligands have been synthesized and characterized.

Results: Five new Pb (Il) complexes [Pb(BPY)(5-CTPC),] (1), [Pb(4-BPY)(5-CTPC)] (2), [Pb,(PHEN),(5-CTPC)4] (3),
[Pb(4-BPY)(5-BTPC),] (4) and [Pb,(PHEN)»(5-BTPC),(ACE),] (5) have been synthesized. Even though in all these
complexes the molar ratio of Pb, carboxylate, N,N-chelating ligand are the same (1:2:1), there is a significant
structural diversity. These complexes have been characterised and investigated by elemental analysis, IR,
"H-NMR,"*C-NMR, TGA, and photoluminescence studies. Single crystal X-ray diffraction studies reveal that complexes
(1, 2) and (4) are mononuclear while (3 and 5) are dinuclear in nature which may result from the chelating nature
of the ligands, various coordination modes of the carboxylates, and the coordination geometry of the Pb(ll) ions.

Conclusions: The observation of structures 2,4 and 3,5 show the structural changes made just chloro/bromo
substituent of the thiophene ring. A detailed packing analysis has been undertaken to delineate the role of valuable
non covalent interactions like X...m, H...X, (X=Cl/Br). A quadruple hydrogen bond linking the monomeric units
and generating a supramolecular architecture is observed in (1). The metal bite unit comprised of PbN,C,

(i.e. Pb-N-C-C-N-Pb) is the repeating unit in all the five complexes and they have almost same geometrical
parameters. This metal bite has been identified as the self assembly unit in complexes.
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Background

The molecular self assembly with discrete supramolecular
units directed by metal ligand coordination and weak in-
teractions are of considerable interest [1-6]. The interplay
of coordination motifs and supramolecular synthons are
of current interest to generate novel materials (metal or-
ganic frameworks (MOF’), coordination polymers, inor-
ganic hybrid materials, etc.). When a sensible choice of
the central metal ion and a ligand whose favourite coord-
ination modes are known one can design an anticipated
variety of supramolecular motifs [6-10].

Lead is a heavy toxic metal element in biological systems
and is one of the major pollutants as a result of its wide-
spread use in industries. In spite of its negative roles the
coordination chemistry of Pb(II) complexes is a matter of
interest, which display interesting structural features as a
consequence of the large radius, adoption of different
coordination numbers from 2 to 10 and especially based
on the extent to which the lone pair is stereo chemically
active [11-15]. A common strategy followed in designing of
the Pb(II) complexes is the presence of carboxylate and
bipyridne systems in the coordination sphere [16-33].
Lead(Il) carboxylate systems containing mono, di and
polycarboxylate have been extensively used in the con-
struction of metal organic networks [23-33]. The N,N’-
bidentate aromatic bases such as BPY,4-BPY and PHEN
are widely used to build supramolecular architectures be-
cause of their excellent coordinating ability and large con-
jugated system that can easily form m-m interactions
among their aromatic moieties, which are either intra or
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intermolecular [16-22]. The thiophene carboxylates possess
various coordination modes such as monodentate,
bidentate chelating, bidentate bridging when coordinated
to the metal ion (Scheme 1). The rigid heterocyclic five
member thiophene ring possesses distinct physical and
chemical properties [34,35]. Also in this heterocyclic thio-
phene ring the relatively bigger size of the sulphur atom
makes the possibility for delocalisation of its lone pair of
electrons, which results in good charge transfer ability of
the ligand [35].

Our strategy is to investigate the chelating behaviour
of these ligands towards lead (II) along 5-CTPC and 5-
BTPC. In all the five complexes BPY, 4-BPY and PHEN
act as a nitrogen donor ligand forming 3D supramolecu-
lar architectures in the solid state. Although there are
some reports of diverse coordination polymers involving
multicarboxylate ligands containing S atom and
bidentate chelating ligands like PHEN, 2-BPY as well as
bridging ligand such as 4-4'-bipyridine as coligands
[36-41], there are only a few reports involving the halo
substituted thiophene carboxylate ligand for the con-
struction of organic—inorganic hybrids [42]. 5-CTPC not
only shows versatile coordination modes but also ex-
hibits non covalent interactions like Cl...it and C-H...Cl
[42-45]. In our present investigation of five Pb(II) com-
plexes, we have observed the different coordination
number, and different coordination modes of the carb-
oxylate ligand which gives the idea of constructing dif-
ferent supramolecular architectures. The coordination
modes of the carboxylate group, observed in these
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Scheme 1 Coordination modes of 5-CTPC, 5-BTPC and acetate. (a) X=Clin 4 (b) X=Cl, Br in 2 and 4 respectively, where M =Pb.
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Table 1 Comparison of coordination modes of various
carboxylates

Complex Caboxylate Type of coordination Geometry
1 5-CTPC Bidentate chelating Pentagonal
pyramidal
2 5-CTPC Bidentate chelating Pentagonal
pyramidal
3 5-CTPC Bidentate chelating, Capped square
Bidentate bridging pyramidal
4 5-BTPC Bidentate chelating, Distorted square
Monodentate pyramidal
5 5-BTPC Bidentate chelating Pentagonal
ACE Bidentate chelating bipyramidal

bridging

Pb(II) complexes are shown in scheme.l. In addition a
previously reported complex [Pb(TPC),(PHEN)] (TPC =
Thiophene 2- carboxylic acid) has been compared with
structures (3, 5) [46].

Results and discussion

Geometry around lead

The lone pair of electrons has a great influence on the
structure of the complex [11,47,48]. In the coordination
chemistry of the Pb(II) ion, the terms holo and hemi di-
rected are used to describe the geometries around the
central Pb atom. Pb(II) complexes where the bonds to
ligand atoms are placed throughout the surface of the
encompassing globe are said to be holo directed, while
hemidirected refers to those cases in which the bonds
to ligand atoms are directed throughout only part of an
encompassing globe [49]. The coordination numbers of
lead in complexes 1 and 2 are six, and they exhibit a
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pentagonal pyramidal geometry. While the coordination
numbers of 4 and 5 are five and seven respectively, and
they show distorted square pyramidal and distorted pen-
tagonal bipyramidal geometry respectively. Comparison of
coordination modes of the carboxylates are listed in
(Table 1). The structure 3 shows an unusual capped
square pyramidal geometry. In complex 1, the axial pos-
ition of the pentagonal pyramid is occupied by the N1 of
the BPY by which it differs from 2 where this position is
occupied by O4 of the 5-CTPC (Figure 1). In 4 the axial
position is occupied by O3 of the 5-BTPC. The coordin-
ation geometry of complexes 1-3,4 as well as the Pb-O
and the Pb-N bond directions show a gap around the Pb
(II) ion, occupied possibly by a stereoactive lone pair of
electrons on lead(Il). The coordination around the lead
atoms is hemidirected with a significant gap trans to che-
lating BPY, 4-BPY and PHEN ligands (Figure 1). In 5
PHEN is a space demanding ligand upon coordination
with the Pb(Il) ion it forms a seven coordinated
holodirected distorted pentagonal bipyramidal complex
instead a hemidirected one with less coordination number.
The hemidirected geometry is the most preferred for
intermediate coordination numbers between 6-8 [50].
There is a -7 stacking interaction, the parallel aromatic
rings belonging to adjacent chains in complexes 1, 2 and 3
that may help to increase the ‘gap’ in the coordination
geometry around the Pb(II) ion.

Crystal structure description of [Pb(BPY)(5-CTPC),] (1)

Single-crystal X-ray diffraction analysis reveals that com-
plex 1 consists of a monomeric Pb(II) ion, a BPY and two
bidentate (5-CTPC) molecules as shown in (Figure 2).
Each Pb(Il) ion is a hexa coordinated environment with

Complex 3; (d) Complex 4 and (e) Complex 5.

Figure 1 Comparison of coordination environment around the Pb(ll) ions showing the geometries. (a) Complex 1; (b) Complex 2; (c)
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Figure 2 ORTEP of complex 1 showing the atom-numbering scheme with displacement ellipsoids drawn at 50% probability level for
all non hydrogen atoms and H atoms are shown as small spheres of arbitrary radii.

two nitrogen from a chelating BPY molecule with a Pb-N
bond distances (2.481(2) A and 2.595(2)A) and four
oxygen atoms from two bidentate 5-CTPC molecules
with the Pb-O bond lengths ranging from2.532(2) A to
2.624(2) A.

The monomeric units are strongly linked to each other
by a quadruple hydrogen bonding motif consisting of
four C-H. . .O hydrogen bonding interactions (inbetween
the hydrogens of the thiophene ring and oxygen from
the bidentate-chelating coordinated carboxyl) (Table 2,
Figure 3). The quadruple hydrogen bonds fused by three
rings, which can be represented by the graph-set

Table 2 Hydrogen bond metrics for complexes 1-5

notation R3(7),R3(10),R3(7) (Figure 4) [51]. Thus it forms
a dimer made of quadruple hydrogen bonds. Surprisingly
inbetween the adjoining units there is a weak coordin-
ation bond (PbO1-O1=3.060 A). A similar structural
unit with same Pb-O weak coordination bond has been
reported earlier [46].

Thus these dimers are further interdigited to each
other by the m- m stacking interactions between the
bipyridine rings leading to one dimensional infinite
chains Cgl — Cg2" and Cg2 — Cgl" [Symmetry code ii:
2-X,-Y,1-Z] (Cgl =N1,C11-C15 and Cg2 = N2,C16-C20)
(Figure 3). Further the chains are connected to each

D—H...A H..A (A) D...A (A) LD-H...A Symmetry operation
[PbBPY)(5-CTPO2] (1)

C8-H8...03 25300 3334(4) 145,00 3%,1y,22
(C9-H9...01 24200 3.318(4) 163.00 3-x,1-y,2-z
C14-H14...04 24700 3.364(4) 162.00 2-%y,1-z
C17-H17...04 24700 3.351(4) 158.00 2-%y,1-2
C18-H18...02 2.5300 3.273(4) 137.00 1-x,y,1-z
[Pb(4-BPY)(5-CTPC)2] (2)

C9-H9...02 256 3437(4) 157 2%,1y,2
[Pb2(PHEN)2(5-CTPO)4] (3)

C4-H4...CI 2.8100 3617(4) 146.00 —2%XY,Z
C11-H11...02 2.5000 3.143(5) 127.00 X 1-y,1-z
[Pb(4-BPY)(5-BTPO)2] (4)

C22-H22A. . .Br1 2.8700 3.791(5) 162.00 2-XY,2-2
C9-H9...02 25600 3.424(6) 155.00 2%,1y,1z
[Pb2(PHEN)2(5-BTPC)2(ACE)2] (5)

(C8-H8...01 2.6000 3.325(5) 135.00 2-x,1-y,1-z
C8-H8...04 24600 3.149(8) 13000 2%,1y,1z
C15-H15...02 2.5200 3.109(7) 121.00 2-x,1-y,2-2
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which are not involved in hydrogen bonding are omitted for clarity.

Figure 3 View of 1 showing the 1D chain made up of C-H...O interactions and the m -m stacking inetractions. The hydrogen atoms
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other by the Cl--m interaction found inbetween the Cl1
of the five member thiophene ring involving (S1,C2-C5)
and the six membered N-hetero ring of the BIPY involv-
ing (N1,C11-C15) (Figure 4).

Crystal structure description of [Pb(4-BPY)(5-CTPC),] (2)
The core structure of 2 is very similar to that of 1 and it
consists of one Pb(II) ion, a 4-BPY and two bidentate

(5-CTPC) molecules as shown in (Figure 5). Each Pb(II) ion
has a hexa coordinated environment with two nitrogen
from a chelating 4-BPY molecule with a Pb-N bond dis-
tances (2.593(2) A and 2.626(2) A) and four oxygen atoms
from two bidentate 5-CTPC molecules with the Pb-O
bond lengths ranging from (2.3469(19) A to 3.019(2) A).
Although the coordination geometry of lead (II) ion is
same for both complexes 1 and 2, they differ in the atoms

Figure 4 Crystal packing in 1 showing the Cl...Cg interactions.
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Figure 5 ORTEP of complex 2 showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level for all
non hydrogen atoms and H atoms are shown as small spheres of arbitrary radii.

J

coordinated at the apical site of the pentagonal pyramid.
In 1 it is occupied by the N1 (Pb-N1 2.481(2) A) of the
bidentate BPY ligand while in 2 it is occupied by the O4
(Pb-O4 2.3469(19) A) of the 5-CTPC.

The monomeric units are linked by C-H. . .O interaction
between C9-H9...02' [Symmetry code i: 2-x,1-y,-z] and
m -7 stacking interactions inbetween two five member
rings Cg2 — Cg2" where Cg2=S2, C7-C10 [symmetry
code ii: 2-X,1-Y,-Z] (Figure 6). Thus these interactions
forms I shaped dimers (Figure 6). This I shaped dimer is

nailed to the two other I shaped dimer on its adjacent
sides by two sets of m —m stacking interactions (Cgl —
Cg3" on one side and Cg3 — Cgd", Cgd — Cg3™ on the
other side). Another pi-pi stacking is found between the
two six member rings of the two adjacent 4-BPY ligands.

Crystal structure of description of [Pb,(PHEN),(5-CTPC),]
(3)

The complex 3 contains a dinuclear lead unit with two
carboxylate groups bridging the lead atoms (Pb-O-C-O-

Figure 6 Perspective view of 2 showing the | shaped dimer formed by C-H...O and m -m stacking interactions.
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Ci2

& an
Figure 7 ORTEP of complex 3 showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level for all
non hydrogen atoms and H atoms are shown as small spheres of arbitrary radii.

J

Pb link). The coordination sphere of each Pb is completed
by the bidentate chelating ligands, PHEN and 5-CTPC.
The coordination around each Pb can be best described as
capped square pyramidal geometry (Figure 1c, Figure 7).
The Pb-N bond distances are 2.604(2)A to 2.614(3) A,
whereas the Pb-O bond distances ranges from 2.332(2)A
to 2.813(2)A. Of the four oxygen atoms two are from a
bidentate carboxylate of 5-CTPC and other two are
bridging oxygens from two different 5-CTPC. The ar-
rangement of the PHEN and carboxylate ligands sug-
gests a gap coordination around the Pb(Il) ion, which
might be occupied by a stereoactive lone pair of

electrons on Pb(Il) ion and also probably due to steric
hindrance of the PHEN ligand. Columns of lead atoms
with Pb-—Pb separation of 3.7020(2) bridged by two the
5-CTPC carboxylates extend along the crystallographic a
axis. The individual dimeric unit of the one layer are al-
most parallel to each other of the next layer and further
the dimeric units are linked to each other by C28-H28. . .CI1"
(Symmetry code (ii) :-2-x,-y,-z) interaction between
the thiophene ring of two dimers. This interactions thus
form an 8 member ring (Figure 8) which can be repre-
sented by the graph-set motif R3(8) [51]. This forms a
chain extending along the crystallographic a axis.

(/
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;
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inbetween the individual dimeric units.

N
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Figure 8 Hydrogen bond pattern in 3 showing the formation of 1D chain by C-H. Cl interactions and formation of the R3(8) graphset motifs
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Two of these chains are interlocked to each other by the
mi- 7t stacking interactions between the two 6 membered
rings made up of the nearby 1,10 phenanthroline rings
Cg5 — Cg5" (Cg5=Cl4, C15,C16,C17,C22 & C21)
[Symmetry code (iv) :-X,2-Y,1-Z]. The Cl of the two thio-
phene rings plays a vital role in stabilisation of crystal
structure, three sets of Cl...Cg interactions are found
inbetween C5-Cl1...Cg3', C5-Cl1...Cg5", C10-Cl2...
Cgl™; where Cgl=S1,C2-C5, Cg3=NI1,C11-C15 and
Cg5 = C14-C17,C22,C21 [symmetry code i=-1+X,-1+Y,
-1+ 7 ii=-1-X,1-Y,1-Z; iii = X,Y,1 + Z] (Figure 9). Similarly
a C-H...m interaction is found inbetween the H of the
PHEN ligand and the five membered thiophene ring.
C19-H19...Cg2 [Cg2 = S2,C7-C10 symmetry code: -1-X,1-
Y,1-Z].

This complex 3 can be structurally compared with a
previously reported in the literature [Pb(TPC),(PHEN)]
(TPC = Thiophene2-carboxylic acid) [46]. It is interesting
to note that the reported Pb-TPC complex has a mono-
meric and these units are linked to one another by stack-
ing and weak coordination bonds whereas complex 3 has
a dinuclear unit. The only difference between the two
complexes is the chloro substitution present in complex 3.

Crystal structure description of [Pb(4-BPY)(5-BTPC),] (4)

Complexes 2 and 4 differ only by the chloro/bromo sub-
stitution in the thiophene ring. Hence they are near
isomorphous with similar cell parameters (Table 3). Re-
garding the coordination geometry, in 4 one carboxylate is
bidentate chelating while the other is in monodentate
fashion. Whereas in 2 both are in bidentate fashion. Thus
in 4 the Pb(II) ion is pentacoordinated, with two N atoms
of the (4-BPY), one O atom of the bidentate chelating
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carboxylate and one O of the monodentate carboxylate in
the basal plane and one O from the bidentate chelating
carboxylate completing the distorted square-pyramidal
geometry (Figure 10).

Although the first order coordination of 4 is different
from that of 2, the same kind of C-H...O and n- m stack-
ing interactions are found in 4. The monomeric units are
linked to each other by the m- m stacking interactions in
between the two five membered thiophene rings Cgl —
Cgl' (Cgl = S2,C7-C10) [symmetry code i: 2-X,1-Y,1-Z].
The C-H...O interactions found inbetween C9-H9...02'
[symmetry code i: 2-X,1-Y,1-Z]. This leads to the forma-
tion of I shaped dimer as in 2. This dimeric unit is further
linked to each other to form the tetrameric unit by a pair
of C-H...Br interactions (Figure 11) while these kind of in-
teractions were absent in 2.

Thus they form a chain. Each of these chains are fur-
ther linked by the the m- m stacking interactions in be-
tween the five membered thiophene rings and a N
containing heterocyclic ring of the 4-BPY Cg3 — Cgl"™
(Cg3=N1, Cl11- C15 and Cgl =S1,C2-C5) (Figure 12).
The most unusual feature of 4 is the monodentate co-
ordination of the carboxylate group leading to a variety
of changes in the 3Dstructure. The reason for the
monodentate coordination of the 5-BTPC may be attrib-
uted to the strong C-H...Br and C-H...O interactions in-
volving the 5-BTPC atoms (Figure 11).

Crystal structure of description of [Pb,(PHEN),(5-BTPC),
(ACE);] (5)

As anticipated the usage of PHEN ligand produced a di-
nuclear structure as 3 (Figure 13). The central Pb(II) ion
not only differs in primary coordination from 3 but it is

1D chains.

Figure 9 View of complex 3 along the crystallographic c axis showing the n- m stacking interactions (spacefilled model) inbetween the
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Complex 1 Complex 2 Complex 3 Complex4 Complex5
Empirical formula C20H12N204CI252Pb  C22H16CI2N204S2Pb  C44H24CI4AN40854Pb2  C22H16Br2N204PbS2  C38H26Br2N408Pb2S2
Formula weight 686.56 714.61 1421.15 803.51 1304.97
Temp, K 296 296 296 29 296
A (A) 0.71073 0.71073 0.71073 0.71073 0.71073
Crystal system Triclinic Triclinic Triclinic Triclinic Monoclinic
Space group P-1 P-1 P-1 P-1 P21/c
a (A 9.0760(1) 10.6261(3) 10.2998(1) 10.710(5) 8.918(5)
b (A) 12.0102(2) 10.9835(2) 11.3830(1) 10.973(5) 23.841(5)
c (A 12.0754(2) 11.4710(2) 11.4287(1) 11.623(5) 12.744(5)
a) 116.441(1) 115.441(1) 100.292(1) 115.592(5) 90
B O 93.682(1) 98.773(1) 103.011(1) 98676(5) 133.39(2)
y ©) 106.176(1) 96.052(1) 115.391(1) 96.238(5) 90
Vv (A3) 1104.46(3) 1172.71(5) 1120.29(2) 1194.5(9) 1969.0(16)
z 2 2 1 2 2
p calcd (g/cm3) 2.065 2024 2.106 2234 2.201
g (mm-1) 8.099 7632 7.989 10615 10.732
F(000) 652 684 676 756 1224
Crystal size (mm) 0.04x0.05 x 0.05 0.05 x 0.05 % 0.06 0.04x0.05 x 0.06 0.08x0.09 x 0.06 0.09x0.05 x 0.06
No of reflections collected 7170 8554 7529 8114 6592
Number restraints 0 0 0 0 0
Goodness-of-fit on F2 1.026 1.03 1.00 1.02 0.98
Final R1 index [I > 20())] 0.0239 0.0240 0.0303 0.0290 0.0309
wR2 (all data) 0.0541 0.0556 0.0635 0.0633 0.0690
Largest difference in peak and  —0.61, 1.14 -0.63,1.27 -045,1.18 -1.08,1.13 —1.05, 0.88
hole (e A-3)
CCDC number 821366 821367 821365 920520 920521

R1 = 3(|[Fol-Fc|l)/3] Fo |; wR2 = [sw(|Fol-|Fc[2)21/zw(|Fo|2)11/2.

B2

Figure 10 ORTEP of complex 4 showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level for all
non hydrogen atoms and H atoms are shown as small spheres of arbitrary radii.




Jennifer and Thomas Muthiah Chemistry Central Journal 2013, 7:139
http://journal.chemistrycentral.com/content/7/1/139

Page 10 of 20

< g
"\ﬁg 03 S2
Pbl
"\ " ',\\I/'? 04
A NI

Figure 11 1D H-bonded chain formed by C-H...Br, C-H...O and n- m stacking interactions existing in 4.

entirely different from all the above structures. Each of
the Pb(II) ion is coordinated to a PHEN and 5-BTPC in
a bidentate chelating mode. Unlike the complex 3 the
bridging carboxylate is replaced by chelating bridging
acetate group of the starting material. This is also
expected as the increase in Pb...Pb separation of 4.482
(3) A compared with that of 3.

The expected C-H...Br and Br...Cg interactions are ab-
sent since one of the carboxylate has been replaced by the
acetate group (Figure 14). The less steric hindrance of the
acetate group made it possible for the C-H...O interaction
inbetween H of the PHEN ring and O of the acetate group
(C15-H15...02" [symmetry code ii: 2-x,1-y,2-z]). Also as
expected the chains formed by the C-H...Cl interactions
(Figure 8) in the case of 3 is absent here. Further the indi-
vidual dinuclear units are linked by the - it stacking inter-
actions are found in between the two 6 membered rings of

the nearby PHEN rings Cg5 — Cg5" (Cg5 = N2, C13-C17)
[Symmetry code (ii): 2-x,1-y,2-z]. These C-H...O and 1i- nt
stacking interactions extend along the crystallographic ¢
axis leading to formation of a chain.

Two of these adjacent chains are interlinked by C-H...
Cg interactions inbetween the H of PHEN ring of a chain
and five membered thiophene ring of the adjacent chain
[C10-H10...Cgl" symmetry code ii: 2-X,1/2+ Y,3/2-Z]
(Figure 15).

Involvement of X (X = Cl, Br) in interactions

Amid other non covalent interactions involving hetero
atoms the role of Cl--m, C-H -1, & Br--11 have been given
importance due to their role in lattice stabilization and
their contribution in determining the modes of packing in
a molecular packing and in solid state it can never be over
looked [52]. The non covalent interactions involving

Figure 12 Crystal packing in 4 the rings involved in stacking interactions are shown as spacefilled models.
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Figure 13 ORTEP of complex 5 showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level for all
non hydrogen atoms and H atoms are shown as small spheres of arbitrary radii.

halogen fall in four types as given in (Figure 16a-d). The
geometry of this R-H...X interaction play a major role in
predictability of these interactions. In this backdrop it is
worth in mentioning that we have studied various non co-
valent interactions involving the halogen atom in com-
plexes 1-5 and the results are given in (Table 4). Various
01 values have been observed with the highest C-Cl.-m for
complex 1. Previous reports state that an interaction of
the type H...X-C the preferred angle would be in the range
of 90-130° rather than higher angles [53,54]. The observed
02 values agree well with the above survey.

Repeating metal bite unit comprised of PbC;N, in (1-5)
The metal bite (PbN,C,) unit is the repeating common
unit of 1-5. This metal bite in 1 is formed with two co-
ordinating N atoms, two carbon atoms of the BPY and
the central lead atom, while in 2,4 it is formed by two
coordinating N atoms, two carbon atoms of the 4-BPY
and the central lead atom. While in 3,5 it is formed with
two coordinating N atoms, two carbon atoms of the
PHEN and the central lead atom.

The metal bite is a monomeric unit in 1, 2 and 4 while it
is dimeric in 3,5. In 3 the metal bites are separated by a

Figure 14 H-bonded chain formed by C-H...O and n- m stacking interactions existing in complex 5.
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Figure 15 Perspective view of 5 the C-H...m interactions shown as dotted lines.

distance of 3.702(2) A. While in 5 the metal bites are
bridged by one of the carboxylate oxygen atoms. Interest-
ingly the bond angles and bond lengths of the metal bite
1, 2 and 4 as well as 3 and 5 are almost comparable in
complexes (Figure 17a,b,d) and (Figure 17c,e) respectively.
On seeing the packing arrangement of these metal bite
units, they are self assembled irrespective of whether they
are monomeric in 1, 2 and 4 or dimeric in 3, 5. A view of
the metal bites is shown in (Figure 18a-e). The dihedral
angles between the two pyridine rings in 1, 2 and 4 are
4.69(15), 1.23(12) ° and 1.43(15) ° respectively. This shows
that the planarity of BPY, 4-BPY and PHEN is maintained.

Thermal analysis

Thermogravimetric analysis (TGA) experiments of the
complexes 1-5 were conducted under a static atmos-
phere of nitrogen at temperatures ranging from RT
(room temperature) to 1000°C in order to determine
the thermal stabilities (Additional file 1). Due to similar-
ities of 1, 2, 4 and 3, 5 they show similar decomposition
patterns (Figure 19). The complexes 1-5 started to melt
well above 150°C showing a very small thermal effect.
Complexes 1, 2, 4 showed two steps of thermal decompos-
ition at (148-430°C, 150-540°C, 168-662°C) which prob-
ably due to two 5-TPC ligands. The decomposition of the

e
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Figure 16 Various possible noncovalent interactions involving the halide, in (a) 61 =62+ 90; (b) 61 =62 =90 and (c,d) other
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Table 4 Bond metrics for X (X = Cl,Br) involved non covalent interactions in complexes 1-5
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Complex Presence of X (X =Cl,Br) involved non covalent interactions Type of interaction Distancein A 01(°) 0 2(°)
1 v (d) &Cl-m C5-Cl-- Cg3 35167 (19) 173.61 (15)
25 Not involved
3 v () CH-Cl C4-H4--Ch 281 14642 130.75
(d) &Cl-mm C5-CI--Cg3 3.8566 (18) 93.99 (12)
(d) CClm - C5-CI-+Cg5 3.9010 (18) 6546 (12)
(d) CCl-m - C10-CI2--Cg1 3.8632 (19) 131.18 (15)
4 \V () CG-H--Br  C22-H22A--Br1 2.8700 162.19 71.83
(d) C-Brm  C(5)-Br(1)--Cg(4) 3462 (2) 86.36(13)

bipyridine ligands took place at (435-957°C, 545-745°C,
667-842°C) in 1, 2 and 4 respectively. Complexes 3, 5
exhibit their first weight loss at temperature ranges of
(145-405°C and 212-497°C). This is due to loss of four
5-TPC molecules in 3 as well as two 5-TPC molecules and
two ACE molecules in 5. The second stage of decompos-
ition at (416-848°C, 501-733°C) in 3 and 5 respectively are
due to the decomposition of PHEN ligands.

Photoluminiscent properties

Previous studies show that Pb(II) complexes con-
structed with conjugated organic ligands can act as
potential candidates for photoactive materials with ap-
pealing photoluminescence properties. Therefore, solid-
state photo luminescence properties of Pb(II) complexes
1-5, with that of N,N’ chelating ligand, were investigated
at room temperature based on their UV-vis spectra

22.76(17)

117.02) °
64.29(8)°

116.8(2) °,

119.15(17)°
Pbl%sy N |
s“, <

W
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Figure 17 Showing the metal bite which is the repeating. (a) Complex 1; (b) Complex 2; (c) Complex 3; (d) Complex 4 and (e) Complex 5.
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Figure 18 The self assembly of the metal bites generating supramolecular architecture. (a) Complex 1; (b) Complex 2; (c) Complex 3;
(d) Complex 4 and (e) Complex 5.
A\
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Figure 19 Thermograms of complexes 1-5 showing TGA curves at the heating rate of 10°C/min.
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(Figure 20). The complex 1 displays a fluorescent emission
at 538 nm (A =423 nm), 2 at 527 nm (A, = 436 nm), 3 at
547 nm (Aex = 441 nm), 4 at 540 nm (e =429 nm) and 5
at 551 nm (Ax = 443 nm). The intense emission bands of
complexes 1-5 to their corresponding ligands implies
that the emission peaks of 1-5 may be due to a metal-to-
ligand charge transfer (MLCT) and/or ligand-to-metal
charge transfer (LMCT). Hence complexes 1-5 may
serve as potential organic—inorganic hybrid photoactive
materials [55].

Experimental

Materials and methods

Commercial starting materials were used without
further purification. 2,2'bipyridine (Aldrich), 4,4"-di-
methyl-2,2"-bipyridine (Aldrich), 5-Chlorothiophen-2-
carboxylic acid (Hoechst Aktiengesellschaft), methanol
(Qualigens, India), 5-Bromothiophene-2-carboxylic acid
(Aldrich), Pb(CH3CO0),.3H,0 were used. IR spectra of
the complex in region 400-4000 cm™" were recorded as
pressed disks (1% by weight in KBr) on a Shimadzu FT IR
spectrophotometer (Additional file 1). 'H-NMR and
13C-NMR spectra were recorded with a Bruker spectrom-
eter at 400 MHz in [D6] DMSO (Additional file 1). CHNS
analysis was carried out using Elementar Vario EL III in
solid state (Table 5). The fluorescent properties were stud-
ied in solid state on a HITACHI spectrofluorimeter in
solid state at room temperature. Both the excitation slit
and emission slit were 5 nm. Thermal stability studies
were carried out on a STA 409 PL Luxx thermal analyzer
at a heating rate of 10°C/min under nitrogen atmosphere.
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Synthesis of [Pb(BPY)(5-CTPC),] (1)

A solution of Pb(CH3CO0),.3H,0O (0.098 g) in 10 ml of
(1:1) CH30H/H,O mixture was stirred over a hot plate
magnetic stirrer for half an hour and 5-CTPC (0.0833 g)
dissolved in 10 ml of CH3;0H was added to it. The mix-
ture was stirred for an additional of 2 hours. A yellow
coloured solution was formed. About (0.0442 g) of
(2-2'-bipyridine) was dissolved in 10 ml of hot water
and added to the reaction mixture; to this solution about
(5 ml) of glacial acetic acid was added. The mixture was
stirred for 3 hours (Scheme 2). The dirty white precipitate
was filtered off and the resulting pale yellow solution was
kept for slow evaporation. Crystals were deposited at room
temperature from the saturated solution. After 3 days, pale
yellow coloured crystals suitable for X-ray diffraction were
obtained. The crystals were filtered and washed with small
portions of methanol and were dried in air (yield 75%
based on Pb). IR selected bands (cm™):1685(s), 1560(s),
1431(s), 1107(s), 994(s), 842(s), 794(s), 762(s), 723(s), 513
(m). ""H NMR (400 MHz, DMSO): § 9.32 (d, /= 4.8 Hz,
1 H), 8.69 (d, J=6.4 Hz, 2 H), 8.38 (d, /=10.0 Hz, 1 H),
8.11 (s, 1H), 7.95-7.94 (m, 2H), 745 (t, 1H), 7.28 (d,
J=4 Hz, 2 H), 7.08 (d, J=4.0 Hz, 2 H) ppm; *C NMR
(100 MHz, DMSO): § 166.3, 155.2, 150.0, 149.2, 144.9,
144.1, 137.7, 137.3, 131.3, 129.5, 129.3, 127.7, 127.0,
124.22, 124.17, 120.4 ppm.

Synthesis of [Pb(4-BPY)(5-CTPC),] (2)

The structure of complex (1) inspired us to design the
preparation of complex (2) with same chelating mode
using the 4,4'-dimethyl-2,2"-bipyridine ligand. The
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Figure 20 Solid-state emission spectra of complexes 1-5.
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Table 5 Color, elemental analyses and stoichiometries of
the Lead(ll) complexes

Complex Color Found (calculated) (%)
C H N S
[Pb(BPY)(5-CTPC)2] Pale yellow 3512 225 419 903
(34.89) (2.05) (4.07) (9.31)
[Pb(4-BPY)(5-CTPC)2] Pale yellow 36,50 285 395 889
(36.87) (2.53) (3.91) (8.95)
[Pb2(PHEN)2(5-CTPC)4] Yellow 3758 196 385 903
(37.08) (1.98) (3.93) (9.00)
[Pb(4-BPY)(5-BTPC)2] Yellow 3295 225 355 800
(32.84) (2.13) (348) (7.97)
[Pb2(PHEN)2(5-BTPC)2(ACE)2] Pale yellow 3482 238 465 480
(34.87) (231) (4.28) (4.90)

procedure of preparation of (2) is similar to (1). Instead of
2-2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridine was used
(Scheme 2) (yield 62% based on Pb). IR selected bands
(cm™): 3435 (m), 1432 (s), 1387(s), 1310(m), 1108(m),
1056(m), 996(s), 921(s), 835(s), 798(s), 767(s), 513(m),. 'H
NMR (400 MHz, DMSO): 6 8.53 (d, J=4.8 Hz, 2 H), 8.22
(s, 2 H), 7.32-7.27 (m, 4 H), 7.11 (s, 2H), 2.40 (s, 6 H)
ppm; >*C NMR (100 MHz, DMSO): § 166.4, 155.0, 148.9,
147.9, 144.0, 131.5, 129.7, 127.7, 124.9, 121.3, 20.7 ppm.
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Synthesis of [Pb,(PHEN),(5-CTPC),4] (3)

The structures of complexes (1) and (2) inspired us to de-
sign the preparation of compound (2) with same chelating
mode using 1,10-phenanthroline ligand. The procedure of
preparation of (3) is similar to that of (1). Instead of
2-2"-bipyridine, 1,10-phenanthroline was used (Scheme 2)
(yield 70% based on Pb). IR selected bands (em 1):3047(m),
1557(s), 1372(s), 1205(m), 1138(s), 1105(s), 1055(s), 994(s),
860(s), 843(s), 798(s), 767(s), 725(s), 666(s), 511(m). H
NMR (400 MHz, DMSO): § 9.20 (d, /=5.6 Hz, 2 H), 8.59
(d, J=9.6 Hz, 2 H), 8.04 (s, 2 H), 7.90-7.87 (m, 2 H), 7.33
(d, J=3.6 Hz, 1 H), 7.06 (d, / = 4.0 Hz, 1 H) ppm; *C NMR
(100 MHz, DMSO): & 163.8, 149.9, 145.2, 136.9, 132.7,
131.0, 128.8, 127.9, 126.8, 123.7 ppm.

Synthesis of [Pb(4-BPY)(5-BTPC),] (4)

The procedure of preparation of (4) is similar to (2). In-
stead of 5-CTPC, 5-BTPC was used (Scheme 2) (yield 53%
based on Pb). IR selected bands (cm™): 1591(s), 1418(s),
990(s), 825(s), 764(s), 681(s), 514(s), . "H NMR (400 MHz,
CDCls): § 856 (d, J=4.8 Hz, 1 H), 8.21 (s, 1 H), 7.15 (d,
J=4.8 Hz, 1 H), 244 (s, 3 H), 1.58 (s, 3 H), 1.25 (s, 2 H)
ppm; *C NMR (100 MHz, CDCLy): § 148.9, 148.2, 124.7,
122.1, 21.2 ppm.

Synthesis of [Pb2(PHEN),(5-BTPC),(ACE),] (5)
The procedure of preparation of (5) is similar to (3). In-
stead of 5-CTPC, 5-BTPC was used (Scheme 2) (yield
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Table 6 Selected bond lengths (A) and bond angles (°) for complexes 1-5
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Selected Voalue Selected ©) Selected Vgalue Selected ©) Selected \{alue Selected ©)
bonds (A) angles bonds (A) angles bonds (A) angles
Complex 1 Complex 2 Complex 4
Pb01-0O1 2532(2) 0O1-Pb01-02  51.55(6) Pbl1-O1 2406(2) O1-Pb1-02 46.69(7) Pb1-01 2407(3) O1-Pb1-04 12061
€
Pb01-02 2586(2) 0O1-Pb01-03  8529(6) Pb1-02 301920 O1-Pb1-03 12044  Pb1-03 2.349(2) O1-Pb1-N1 135.72
@) 9)
Pb01-03 2.518(2) O1-Pb01-04 13486  Pb1-03 27192) O1-Pb1-04 82.29(7) Pb1-04 2.718(4) O1-Pb1-N2 75.88
©) @)
Pb01-04 2624(2) O1-Pb01-N1 7761(7) Pb1-04 23469  O1-Pb1-N1 13483  Pb1-N1 2631(3) 03-Pb1-04 5145
(19) @) ©)
Pb01-N1 2481(2) O1-Pb01-N2 12156  Pb1-N1 2626(2) O1-Pb1-N2 7557(7) Pb1-N2 2.585(3) O3-Pb1-N1 80.89
®) (10)
Pb01-N2 2.595(2) 02-Pb01-03 13241 Pb1-N2 2.593(2) 02-Pb1-03 88.10(6) 03-Pb1-N2 86.18
7) (8
02-Pb01-04  152.80 02-Pb1-04 83.59(6) 04-Pb1-N1 7742
) (10)
02-Pb01-N1 75.07(7) 02-Pb1-N1 162.85 04-Pb1-N2 126.01
©) 8)
02-Pb01-N2  75.97(7) 02-Pb1-N2 122.19 01-C1-02 1251
©) ?3)
03-Pb01-04  51.14(6) 03-Pb1-04 51.33(7)
03-Pb01-N1  77.00(7) 03-Pb1-N1 77.62(7)
03-Pb01-N2  123.39 03-Pb1-N2 126.66
8 (6)
04-Pb01-N1 81.02(7) 04-Pb1-N1 80.09(7)
04-Pb01-N2  82.14(7) 04-Pb1-N2 86.66(7)
N1-Pb0O1-N2  64.29(8) N1-Pb1-N2 62.21(7)
Complex 3 Complex5
Pb1-01 2453(3) 0O1-Pb1-03 82.02 Pb1-0O1 2.749(5) O1-Pb1-02 50.02
(10) (12)
Pb1-02i 2.741(3) O1-Pb1-04 7881 Pb1-02 2.335(33) O1-Pb1-03 119.74
(10) (an
Pb1-03 2.333(2) O1-Pb1-N1 13532 Pb1-03 2633(5 0O1-Pb1-04 82.56
(11) (12)
Pb1-04 2816(3) O1-Pb1-N2 77.26 Pb1-04 2.824(3) O1-Pb1-N1 7917
) (12)
Pb1-N1 2604(3) 0O1-Pb1-02' 146.86  Pb1-N1 2608(4) O1-Pb1-N2 120.32
(10) (an
Pb1-N2 2612(3) 0O3-Pb1-04 4997(9) Pb1-N2 2577(4) 01-Pb1-O1' 63.24
(1)
Pb1 -Pb1' 37020  0O3-Pb1-N1 75.55(9) Pb1-O1' 2909(5) 02-Pb1-03 87.25
2) (12)
03-Pb1-N2 86.32 02-Pb1-04 8342
(10) (10)
02i-Pb1-03  102.13 02-Pb1-N1 7952
(10) (10)
04-Pb1-N1 112.38 02-Pb1 -N2 7727
(10) (12)
04-Pb1-N2 13248 O1a-Pb1-02 11245
(10) (13)
02i-Pb1-04 7923 03-Pb1 -04 4769

(13)
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Table 6 Selected bond lengths (A) and bond angles (°) for complexes 1-5 (Continued)

N1-Pb1-N2 63.34
(10)

O2i -Pb1-NT 7646
(10)

O2i-Pb1-N2 135.46
(10)

03-Pb1-NT  139.85
(12)
03-Pb1-N2 7638
an
01-C1-02 121.9(5)
Ola-Pb1-03  140.20
©
04-Pb1 -NT 16044
(13)
O4-Pb1-N2 12144
(12)
03-C3-04 125.2(5)
Ola-Pb1-04 9861
an
N1-Pb1-N2 63381
(14)

Complex 3 symmetry code (i):-x,1-y,1-z Complex 5 symmetry code (i): 2-x,1-y,1-z.

67% based on Pb). IR selected bands (cm™): 3388(w),
1562(s), 1358(s), 1098(s), 967(s), 843(s), 727(s), 766(s),
669 512(m). 'H NMR (400 MHz, CDCls): § 9.24-9.23
(m, 2 H), 8.28 (d, J=9.6 Hz, 3 H), 7.81-7.66 (m, 4 H),
1.73 (s, 3 H), 1.25 (s, 1 H) ppm; *C NMR (100 MHz,
CDCl;): § 150.3, 146.2, 136.1, 128.7, 126.6, 123.2 ppm.

Single crystal X-ray structure analysis

Intensity data sets were collected at room temperature, on a
BRUKER SMART APEXII CCD [56] area-detector diffract-
ometer equipped with graphite monochromated Mo Ka ra-
diation (\ = 0.71073 A). The data were reduced by using the
program SAINT [56] and empirical absorption corrections
were done by using the SADABS [56]. The structures were
solved by direct methods using SHELXS-97 [57] and subse-
quent Fourier analyses, refined anisotropically by full-matrix
least-squares method using SHELXL-97 [57] within the
WINGX suite of software, based on F2 with all reflections.
All carbon hydrogens were positioned geometrically and re-
fined by a riding model with Uy, 1.2 times that of attached
atoms. All non H atoms were refined anisotropically. The
molecular structures were drawn using the ORTEP-III [58],
POV-ray [59] and MERCURY [60]. Crystal data and the se-
lected parameters for complexes 1-5 were summarized in
(Tables 3 and 6) respectively. Selected hydrogen bonding
geometries are listed in (Table 2). The crystals remained
stable throughout the data collection.

Conclusions

A series of novel Pb(II) complexes in concert with
5-CTPC, 5-BTPC and corresponding bidentate chelating
N.N’ ligands have been synthesized and characterized.

There is significant structural diversity even though, in
all the complexes the molar ratio of Pb, carboxylate, N,
N-chelating ligand (ie, 1:2:1) is the same. The complexes
1, 2, 4 are mononuclear and are structurally diverse
compared with 3, 5 which are dinuclear in nature. The
observation of structures 2, 4 and 3, 5 show the struc-
tural changes made just chloro/bromo substituent of the
thiophene ring. In addition to noncovalent interaction
like C-H...O, which is the reason for assembly of pri-
mary motifs; various other interactions like X...m, H...X,
(X =Cl/Br) add additional support in organizing these
supermolecules in to extended architectures. It is note-
worthy that the organic ligands not only serve as a space
filling component but they are also involved in structural
propagation either by - 7t stacking or C-H... i stacking in-
teractions. Complexes 1-5 exhibit strong emissions and
may be potential materials for emitting diode devices. How-
ever this work not only shows the influence of replacement
of different ligands on the structure but also it illustrates
the effects of substituent’s on the ligands on the crystal
structure and geometry of the central metal ion, which also
provides valuable instruction in design of coordination
complexes with desired supramolecular architectures.

Additional file

Additional file 1: contains the IR, NMR spectra and the TGA curves
for complexes (1-5).
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