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Abstract

Background: Bioconcentration factor (BCF) describes the behaviour of a chemical in terms of its likelihood of
concentrating in organisms in the environment. It is a fundamental property in recent regulations, such as the
European Community Regulation on chemicals and their safe use or the Globally Harmonized System for
classification, labelling and packaging. These new regulations consider the possibility of reducing or waiving animal
tests using alternative methods, such as in silico methods. This study assessed and validated the CAESAR predictive
model for BCF in fish.

Results: To validate the model, new experimental data were collected and used to create an external set, as a
second validation set (a first validation exercise had been done just after model development). The performance of
the model was compared with BCFBAF v3.00. For continuous values and for classification purposes the CAESAR
BCF model gave better results than BCFBAF v3.00 for the chemicals in the applicability domain of the model. R2

and Q2 were good and accuracy in classification higher than 90%. Applying an offset of 0.5 to the compounds
predicted with BCF close to the thresholds, the number of false negatives (the most dangerous errors) dropped
considerably (less than 0.6% of chemicals).

Conclusions: The CAESAR model for BCF is useful for regulatory purposes because it is robust, reliable and
predictive. It is also fully transparent and documented and has a well-defined applicability domain, as required by
REACH. The model is freely available on the CAESAR web site and easy to use. The reliability of the model
reporting the six most similar compounds found in the CAESAR dataset, and their experimental and predicted
values, can be evaluated.

Background
Bioconcentration factor (BCF) is a fundamental prop-
erty, describing the likelihood of a chemical concentrat-
ing in organisms, when the compound is present in the
environment. It is required for regulatory purposes, for
instance within the REACH (Registration, Evaluation,
Authorisation and Restriction of Chemicals) [1] and
Globally Harmonized System (GHS) [2] regulations. The
first aims to ensure a high level of protection of human
health and the environment as well as the free

movement of substances, on their own, in preparations
and in articles, while enhancing competitiveness and
innovation. This regulation also promotes the develop-
ment of alternative methods for assessing hazard of
substances.
The GHS is intended to create a globally harmonized

system of classification and labelling of chemicals to
reduce the potential for adverse effects to people or the
environment and to harmonize the existing classification
and labelling systems. In Europe it is implemented
through the Classification Labelling and Packaging (CLP)
regulation [3], which is integrated into REACH (for clas-
sification and labelling). Under REACH, BCF data is
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required for all compounds produced or imported over
100 tonnes/y. BCF values are necessary for the classifica-
tion and labelling, for the Persistent, Bioaccumulative
and Toxic (PBT) evaluation and for chemical safety
assessment. The first is obligatory for all chemicals pro-
duced or imported over one tonnes/y. The last two are
usually required for substances produced or imported
over ten tonnes/y. According to CLP, BCF data, with bio-
degradability, is necessary to assess whether a substance
belongs to a chronic toxicity category. Table 1 sum-
marises all the standard requirements for BCF.
The test is preferably done according to guidelines;

REACH recommends fish as preferred species, and the
corresponding OECD technical guideline is OECD 305
[4]. The test can use even hundreds of animals, taking
more than a month, and costs several tens of thousands
of Euros per chemical, depending on the country. This
endpoint has been estimated to be one of those that will
require more animal use (and more money, as a conse-
quence) to comply with REACH [5,6].
REACH promotes the use of alternative methods to

reduce the number of animal tests, and lists the in silico
methods Quantitative Structure-Activity Relationship
(QSAR), read-across and analogue identification. QSAR
are mathematical models that seek a relationship
between the chemical properties of a substance and its
activity (e.g. toxicity, ability to bioaccumulate in organ-
isms, carcinogenicity and so on). QSAR are also men-
tioned in other regulations, and indeed in the USA they
have been applied for decades to assess chemical safety
when experimental data are lack. A QSAR model
(BCFBAF v3.0) has been developed to predict BCF and
is present in the EPISuite v4.0, supported by US EPA
(Environmental Protection Agency of United States).
The European Commission funded a project, CAESAR

[8], to develop QSAR models taking account of the
REACH requirements. CAESAR developed several mod-
els for five endpoints: BCF, mutagenicity, carcinogeni-
city, developmental toxicity and skin sensitisation. Then
one model for each endpoint was chosen and included
in the CAESAR web tool.

The CAESAR BCF model has been presented in a pre-
vious paper [9]. Here, we present the applet developed
for using this BCF software, the validation of the CAE-
SAR model with new data and its use in classification.
Indeed, after CAESAR modelling activities had started,
two data collections appeared, one from EURAS [10]
and one from Canada [11]. The authors of both collec-
tions had carefully evaluated the data. Here, we discuss
the overall results on the basis of the new validation and
address the applicability domain of the model.

Results
The evaluation of the experimental data
The data, its quality and number are at the basis of any
QSAR model. Good quality data is very important to
obtain a good QSAR model. Data quality is even more
important in the case of read-across, which relies on
very few values. Data quality is anyway at the basis of
any assessment, in particular for regulatory purposes.
Sound assessment is necessarily based on sound data.
To properly assess the performance of a QSAR model

it is important to know the specific variability of the
endpoint of interest, as it will be implicitly transferred
into the uncertainty of the QSAR model. A QSAR
model cannot achieve predictions that are more accurate
than the original data.
The variability of the BCF data reported in the litera-

ture is ± 0.75 log units [12]. The variability of the
experimental data (calculated as the average of the
range assumed by the values for each compound) in the
Arnot et al. [11] database is 0.69 log units. Considering
only experimental data for fish species suggested by the
OECD (according to OECD guideline 305) and with an
overall reliability score of 1 (the most reliable data), the
variability drops to 0.48 log units. For the EURAS data-
base, considered a gold standard database, the variability
of the experimental BCF values is 0.45 log units, which
decreases to 0.42 log units for the substances included
in this study.

LogP and its relationship with the BCF data
LogP is the logarithm of the partition coefficient
between octanol and water. It is considered very impor-
tant to assess the bioaccumulation potential of a sub-
stance. Most models use logP to predict BCF (alone or
together with other descriptors). The guidelines of the
European Chemicals Agency (ECHA) for REACH sug-
gest using logP for screening (if logP < 4.5, then the
substance is non-bioaccumulative). Comparing the
experimental values for logBCF and logP (see Figure 1),
experimental logP alone cannot separate compounds
that are bioaccumulative or not. Table 2 compares the
results of the logP-based screening suggested by ECHA
with experimental data. There are almost 2% of false

Table 1 Summary of the standard requirements for BCF
(Bioconcentration factor).

tonnage REACH
annexes

C&L (CLP)1 PBT2

assessment
CSA3

1 - 10 tonnes/y x (if
available)

10 - 100
tonnes/y

x (if
available)

x x

> 100 tonnes/y x x (if
available)

x x

1 Classification and Labelling (Classification, Labelling and Packaging)
2 Persistent, Bioaccumulative and Toxic
3 Chemical Safety Assessment
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negatives and the compounds with logP ≥ 4.5 are almost
equally nB or B/vB (where nB means non-bioaccumula-
tive, B bioaccumulative and vB very bioaccumulative).
False negatives are compounds that are predicted as
safe, without risky properties, but are in fact dangerous.
Regulators want to avoid this situation. False positives
are compounds that are predicted to be active, but are
not.
The CAESAR model, like most of the QSAR models

for BCF, used mainly log P as fundamental descriptor.
So it is quite similar to models like BCFBAF v3.00 [7]
and many others. We used a series of log P values cal-
culated with four programs at pH 7, as explained in the
past [9]. Table 3 reports the correlations between these
calculated log P values and the experimental logBCF, for
the chemicals used in the CAESAR model. These results
do not mean that one program gives more reliable log P
prediction; we simply explain the reasons for our selec-
tion in this specific case. When the model was

developed, we also used logD as additional descriptor,
calculating the partition coefficient in a series of acidic
and basic pH, but the results were no better.
As also appears from Table 3, the correlation between

log P and BCF is not enough to support the use of this
single parameter with a simple model. This is the same
message as in Figure 1, where experimental values were
used. Different factors are indeed involved in the BCF
process and further components are necessary to simu-
late this better. Thus, seven other descriptors were iden-
tified using powerful information technology tools to
screen a large number of potentially useful descriptors.
Here we use the term descriptors in its broad sense,
including molecular descriptors and fragments. Existing
software, like the programs we used and describe in the
experimental section, can calculate a large number of
descriptors, considering the molecule as whole, or
counting smaller molecular parts, like atoms or molecu-
lar groups. In this way, the model can be improved by
extracting knowledge related to molecular descriptors,
which boost its performance, taking account of other
molecular features related to the property of interest.
The CAESAR model includes two independent models,
which run in parallel, and the results are combined in
an integrated model [9].

Validation of the CAESAR model
A major criticism of QSAR models is that they reflect
the current list of chemicals used to build up the model,
but they cannot predict the values for new compounds.
For this reason, great care is needed in validating the
QSAR model, using good statistical methods. There is
still a debate in the QSAR community on the best ways
to verify whether the model is predictive or not. Some
authors prefer external validation, which is done with a
set of compounds never used during the development of
the model. This approach is questioned by others, who
note that in some cases the number of compounds is
too limited to use this approach without renouncing a
significant proportion in order to represent the real
situation; furthermore, external validation is related to
the specific list of compounds, which can represent a
bias. Thus, other methods are suggested, preferring
internal validation.
We have presented the results of internal validation

and the first set used for validation [9]. Figure 2 shows
the results of the BCF models on the training set, on
the first validation set and on the new, second validation
set. The standard deviation error in prediction (SDEP)
of the CAESAR BCF model is about 0.5 [9]. This is in
agreement with the variability of the experimental data,
and shows that on the average the expected errors of
the in silico and experimental methods are similar. The
following results consider only the compounds within

Figure 1 Comparison of experimental values of logP and
logBCF. The two thresholds for BCF indicated in the REACH
legislation are shown. The screening threshold proposed by ECHA
for logP 4.5 is also reported.

Table 2 Confusion matrix for logBCF classification using
logP experimental values.

logP

< 4.5 ≥ 4.5

logBCF nB1 70.48% 14.32%

B2 1.10% 3.08%

vB3 0.44% 10.57%
1 Non Bioaccumulative
2 Bioaccumulative
3 Very Bioaccumulative
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the applicability domain of the CAESAR model (see the
Experimental section). Thus, the number of compounds
used for the evaluation as second validation set is 119,
compared to 327 present in the training set. It means
that the proportion is close to the 36% of the training
set. The overall R2 (the square correlation coefficient
between predicted and experimental values) is 0.81, and
the R2 for the second validation set is 0.69. The SDEP is
0.57 for all the compounds, and 0.69 for the second vali-
dation set. To evaluate the performance of the model
better we also considered the Q2 (calculated according
to [13]) of the entire dataset and of the external one,
and the results were practically identical to R2, showing
that the CAESAR model is predictive even if there is a
reduction of the statistical characterisation.
Figure 3 shows the performance of BAFBCF v3.00

model reporting the results for the compounds used by
the developers in their validation and training sets.
BCFBAF v3.00 split chemicals in ionic and non-ionic, so
we left this information. The developers did not use the
compounds in the external during the model

development. This external set is of 82 compounds and
many of the compounds we took from Arnot were
already present in the BAFBCF v3.00 training set. Com-
pared to the 450 compounds in the BAFBCF v3.00
training set, the number of compounds (82) in this
external validation set amount to 18%.
We also checked the performance, using the three

splits (training, validation done by the developers, sec-
ond validation with new compounds), and comparing
the results for these splits according to CAESAR and
BCFBAF v3.00. This meant the comparison was not
biased by one splitting procedure, because all possibili-
ties were assessed. Table 4 shows the results, indicating
the R2 and the SDEP. We excluded compounds that
CAESAR labels as unreliable.

Classification approaches for BCF
Using a quantitative model like CAESAR as a basis for
classification approaches for BCF has the main

Table 3 Regression coefficient between logP calculated with different programs and BCF.

Descriptor Chemical meaning Source Model R R2 F value

logPACD logP value calculated by ACD software ACD software logBCF = 0.305* logPACD
+0.767

0.605 0.336 217.442

logPKowwin logP value calculated by Kowwin software Kowwin software logBCF = 0.357* logPKowwin
+0.605

0.657 0.432 266.931

logPMDL logP value from MDL descriptors MDL descriptors logBCF = 0.481* logPMDL

+0.290
0.737 0.543 448.043

MLOGP Moriguchi octanol-water partition coeff. (logP) Dragon
software

logBCF = 0.555* MLOGP
+0.117

0.746 0.556 471.748

Figure 2 CAESAR model performance. Comparison of the
experimental logBCF values and the predicted ones using the
CAESAR model (chemicals within the applicability domain), for the
training, validation and external sets.

Figure 3 BCFBAF v3.00 performance . Comparison of the
experimental logBCF values and the predicted ones using the
BCFBAF v3.00 model for the ionic training, non-ionic training,
validation and external sets.
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advantage that its use remains flexible, not linked to a
specific threshold, such as those indicated in specific
legislations (for instance, a substance is considered
bioaccumulative for REACH if the BCF value is greater
than 2000, but for CLP the threshold is 500). Therefore,
it can still be used if these limits are modified or
updated over the years. In this section, we analyze the
use of the CAESAR model in classification according to
the REACH. Depending on the tonnage of the chemical
to be put on the market, REACH specifics different
ways to report the BCF characterisation. As already
explained, for lower tonnage the information is only
categorical, to define the chemical as bioaccumulative or
not; however, at higher tonnage (> 100 tonnes/y) BCF
has to be given as a continuous value to be used for risk
evaluation.
Table 5 shows the results of the model (considering

only compounds in the applicability domain), used for
classification in three classes with the B and vB limits
indicated in REACH: 3.3 in log units for B and 3.7 for
vB. To take account of the uncertainty related to

experimental and predicted values, an offset of 0.5 log
units was applied to the compounds whose predicted
BCF values fell near the B and vB thresholds. In other
words, we applied a conservative criterion, reflecting the
fact that the data are affected by a given uncertainty. In
Table 5, we note that when used as a classifier the CAE-
SAR model has clear advantages over the single criterion
of the logP at 4.5 (see above) because: 1) it can predict
three classes; 2) the accuracy of the prediction is much
higher (always above 90% even on the second validation
set, while accuracy for logP as from Table 2 is about
84%). Table 6 shows the confusion matrix using the
CAESAR model as a classifier, with the 0.5 offset
explained above. The percentage of false negatives
decreases, but false positives increase. This solution is
more conservative, as explained.
The performance in classification of the CAESAR

model (without and with the 0.5 correction) was com-
pared with that of BCFBAF v3.00 (see Tables 7 and 8).
Figure 4 shows the comparison of the accuracy of the
models.

Table 4 R2 and SDEP for CAESAR and BCFBAF v3.00 models.

Set CAESAR training CAESAR test CAESAR validation

Model CAESAR BCFBAF v3.00 CAESAR BCFBAF v3.00 CAESAR BCFBAF v3.00

No. values 327 327 81 81 119 119

R2 0.85 0.80 0.83 0.77 0.69 0.61

SDEP 0.53 0.62 0.51 0.61 0.70 0.85

Set BCFBAF training BCFBAF validation BCFBAF external

Model CAESAR BCFBAF v3.00 CAESAR BCFBAF v3.00 CAESAR BCFBAF v3.00

No. values 383 383 80 80 64 64

R2 0.79 0.76 0.78 0.67 0.79 0.79

SDEP 0.57 0.64 0.61 0.75 0.49 0.81

Set CAESAR validation ∩ BCFBAF v3.00 validation CAESAR validation ∩ BCFBAF v3.00 external total

Model CAESAR BCFBAF v3.00 CAESAR BCFBAF v3.00 CAESAR BCFBAF v3.00

No. values 22 22 7 7 527 527

R2 0.74 0.68 0.61 0.19 0.81 0.75

SDEP 0.64 0.69 0.72 1.25 0.57 0.68

R2, SDEP and number of compounds are reported for both models for the following sets of compounds: CAESAR (training, test and external), BCFBAF v3.00
(training, validation and external), compounds shared between CAESAR validation and BCFBAF v3.00 validation, compounds shared between CAESAR validation
and BCFBAF v3.00 external and total compounds. Only the compounds in the applicability domain of CAESAR were analysed.

Table 5 Classification with the CAESAR model.

Training set Observed logBCF First validation set Observed logBCF Second validation set Observed logBCF

327 comp. nB B vB 81 comp. nB B vB 119 comp. nB B vB

Predicted logBCF nB 82.46
(270)

3.38
(11)

0.31
(1)

Predicted logBCF nB 90.00
(72)

3.75
(3)

0.00
(0)

Predicted logBCF nB 88.24
(105)

4.20
(5)

0.84
(1)

B 1.54
(5)

2.15
(7)

0.92
(3)

B 0.00
(0)

1.25
(2)

1.25
(1)

B 0.84
(1)

1.68
(2)

2.52
(3)

vB 0.62
(2)

1.23
(4)

7.38
(24)

vB 1.25
(1)

0.00
(0)

2.50
(2)

vB 0.00
(0)

0.84
(1)

0.84
(1)

Three sets are reported: training, first validation and second validation set. The percentage of the total of compounds predicted is given without considering
those outside the applicability domain. In brackets, the number of compounds for each class. The total number of compounds is also reported.
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Discussion
The BCF model developed within the CAESAR project
proved to be predictive on the basis of the further vali-
dation done with a second validation set of 172 com-
pounds. This shows the robustness, reliability and
predictivity of the model. This model also proved valid
on the basis of this demanding validation which is not
generally done. Indeed, the second validation set is lar-
ger than the first, and its population is expected to be
more heterogeneous. We verified that the first validation
set was representative of the training set. Conversely, the
new set of validation compounds included all com-
pounds for which we found new data from the sources
mentioned, and is thus probably more heterogeneous
than the first validation set, which had the same data
source.
Using the second validation set, the SDEP is still com-

parable with the experimental variability, which range
from 0.75 to 0.42 for the sets of substances we used (see
above). The limited increase of SDEP is partially due to
this experimental variability, and partially to the model.
REACH requires a series of features for the QSAR

models. Validity is a first and we did a further check to
shows the model’s validity better. Another criterion is
that the model must have good documentation which is
reliable for REACH. This is a further constraint and
CAESAR is fully transparent and documented. All data
used to build up the model, all structures, and the algo-
rithm are given; the algorithm has been detailed in the

scientific literature, including a description of the code
[9], and the structures and data are publicly available
through the web [8]. The model starts from experimen-
tal data obtained following an official protocol docu-
mented and suitable for REACH. All chemical
structures have been checked within CAESAR by at
least two partner laboratories, and a series of com-
pounds have been eliminated, for errors or lack of suffi-
cient detail in the structure or experimental protocol.
This shows the very high quality evaluation of the input
data. Furthermore, the output of the model has been
designed for use with REACH, keeping in mind the
thresholds given by this legislation. The model has been
optimised to reduce the number of errors, particularly
false negatives. This proves that the model is suitable
for the output specifications, for classification and label-
ling and risk assessment, as required by REACH.
The final requirement listed by REACH is regards the

applicability domain of the model. This means assessing
whether the model, even if good from a general point of
view, is suitable to be applied to the specific chemical of
interest. For BCF we developed a series of independent
tools to assess this:

1. Chemical descriptor space. For instance, we
excluded carbon disulfide because CAESAR reported
the descriptors were out of the range.
2. Rules, codified into sub-structures that lead to
greater uncertainty; they are identified by CAESAR

Table 6 Classification with the CAESAR model adding a 0.5 log units offset.

Training set Observed logBCF First validation set Observed logBCF Second validation set Observed logBCF

327 comp. nB B vB 81 comp. nB B vB 119 comp. nB B vB

Predicted logBCF nB 73.70
(241)

0.31
(1)

0.00
(0)

Predicted logBCF nB 77.78
(63)

0.00
(0)

0.00
(0)

Predicted logBCF nB 81.51
(97)

1.68
(2)

0.00
(0)

B 8.87
(29)

3.06
(10)

0.31
(1)

B 11.11
(9)

3.70
(3)

0.00
(0)

B 7.56
(9)

1.68
(2)

0.84
(1)

vB 2.14
(7)

3.36
(11)

8.26
(27)

vB 1.23
(1)

2.47
(2)

3.70
(3)

vB 0.84
(1)

2.52
(3)

3.36
(4)

Three sets are reported: training, first validation and second validation set. The percentage of the total of compounds predicted is given without considering
those that are outside the applicability domain. In brackets, the number of compounds for each class. The total number of compounds is also reported. To take
account of the endpoint variability, the predicted values are modified adding an offset of 0.5 log units for the compounds near the B and vB thresholds.

Table 7 Classification with the BCFBAF v3.00 model.

Training set Observed logBCF Validation set Observed logBCF External set Observed logBCF

450 comp. nB B vB 103 comp. nB B vB 82 comp. nB B vB

Predicted logBCF nB 82.00
(369)

3.33
(15)

2.00
(9)

Predicted logBCF nB 81.55
(84)

2.91
(3)

1.94
(2)

Predicted logBCF nB 39.02
(32)

12.20
(10)

3.66
(3)

B 2.00
(9)

0.67
(3)

2.00
(9)

B 0.97
(1)

0.97
(1)

0.00
(0)

B 10.98
(9)

4.88
(4)

4.88
(4)

vB 2.22
(10)

0.89
(4)

4.89
(22)

vB 3.88
(4)

0.97
(1)

6.80
(7)

vB 6.10
(5)

3.66
(3)

14.63
(12)

Three sets are reported for the compounds of the dataset: training, validation and external. The percentage of the total of compounds predicted is given without
considering those outside the applicability domain. In brackets, the number of compounds for each class is reported. The total number of compounds is also
reported.

Lombardo et al. Chemistry Central Journal 2010, 4(Suppl 1):S1
http://www.journal.chemistrycentral.com/content/4/S1/S1

Page 6 of 11



using SMARTS (SMiles ARbitrary Target Specifica-
tion) (see Figure 5). For instance, CAESAR identified
a potential problem with a compound with Silicon.
3. Visualisation of similar substances. A tool was
developed for this, showing the six compounds in
the training set most similar to the predicted
compound.
4. Measurement of the similarity. These six similar
compounds are also related with a numerical score
indicating the similarity with each compound of
interest. The approach and algorithm are described
in the experimental section. For instance, carbon dis-
ulfide had a poor similarity value, lower than 0.5.
5. We report the predicted value for each of these
six similar compounds, compared with their experi-
mental value, to give a direct appreciation of the
potential errors. This further guides the user on the
reliability. We give a couple of examples of the
information sheets produced by CAESAR in the
Supplementary Information.

Thus, we developed new tools for applicability
domains, offering users information to assess whether a

prediction is reliable for a certain compound. This bat-
tery of approaches for the applicability domain is inno-
vative and complex. It uses not only a priori tools,
based on chemometric measurements, as other methods
do but we have added rules a posteriori, based on our
results. Thus, these give a further evaluation, not only
theoretical on the basis of chemical descriptors and frag-
ments, but also on the basis of the output values and
the observed errors.
These tools to identify pitfalls may help to explain why

CAESAR performs better than BCFBAF v3.00. This latter
identified only one substance potentially outside the
applicability domain. Our approach gave much larger
number of compounds improving the results on the
remaining compounds. Figure 4 shows the performance
of CAESAR using all possible splits of chemicals. The R2

is always slightly higher than that of BCFBAF v3.00, and
the SDEP, which shows the error, is always slightly lower.
In one case the two models perform at the same level.
The user should always check and carefully evaluate

the information given by CAESAR on the applicability
domain. If there is a warning (for the range of descrip-
tors or for the presence of critical fragments), or if the

Table 8 Classification with the BCFBAF v3.00 model adding a 0.5 log units offset.

Training set Observed logBCF Validation set Observed logBCF External set Observed logBCF

450 comp. nB B vB 103 comp. nB B vB 82 comp. nB B vB

Predicted
logBCF

nB 77.56
(349)

2.22
(10)

0.44
(2)

Predicted
logBCF

nB 78.64
(81)

1.94
(2)

0.97
(1)

Predicted
logBCF

nB 26.83
(22)

6.10
(5)

1.22
(1)

B 4.44
(20)

1.11
(5)

1.56
(7)

B 2.91
(3)

0.097
(1)

0.97
(1)

B 12.20
(10)

6.10
(5)

2.44
(2)

vB 4.22
(19)

1.56
(7)

6.89
(31)

vB 4.85
(5)

1.94
(2)

6.80
(7)

vB 17.07
(14)

8.54
(7)

19.51
(16)

Three sets are reported for the compounds of the dataset: training, validation and external. The percentage of the total of compounds predicted is given without
considering those that are outside the applicability domain. In brackets, the number of compounds for each class. The total number of compounds is also
reported. To take account of the endpoint variability, the predicted values are modified adding an offset of 0.5 log units for the compounds near the B and vB
thresholds.

Figure 4 CAESAR and BCFBAF v3.00 accuracy. Comparison of the accuracy, using CAESAR and BCFBAF v3.00, for their three respective sets
(training, validation and external). * Modified: using an offset of 0.5 for values close to the thresholds (see text).

Lombardo et al. Chemistry Central Journal 2010, 4(Suppl 1):S1
http://www.journal.chemistrycentral.com/content/4/S1/S1

Page 7 of 11



similarity of the chemical is not satisfactory, or if there
are errors in the prediction of similar compounds, these
factors should all lead to the conclusion that the model
is not reliable for the chemical under evaluation.
If these factors are excluded, we can expect the error

to be of the same order of magnitude as the experimen-
tal error. Further concern may arise when the predicted
value is close to the threshold.

Conclusions
The CAESAR model on BCF provides user with new
tools for the prediction of this parameter. The model is
publicly available, and has been designed to be easily
usable. Nevertheless, a series of quality criteria have

been introduced, keeping in mind the specific require-
ments of the REACH legislation, such as scientific valid-
ity (with two independent sets of compounds for
validation), and clear, transparent documentation. The
model has been designed to be suitable for REACH,
considering the thresholds and legislative uses. Finally,
innovative tools for a transparent check of the applic-
ability domain have been developed and made publicly
available through the web.

Experimental
The data
All chemical structures collected [12] were processed as
explained [9]. The selected substances were split into

Figure 5 Fragments related to large errors and corresponding SMARTS1. 1SMARTS: SMiles ARbitrary Target Specification. 2A: using the [Cl]
SMARTS all compounds with at least one chlorine atom are identified; to select only compounds with a minimum of six chlorine atoms the
SMARTS recognizing program of the applet was used (it counts the number of fragments and then selects only the compounds with at least
six). 3E: O[a] & [Cl,Br]a are two SMARTS to be used together to identify a fragment with an oxygen bound to an aromatic atom and at least
three halogens (chlorine or bromine) bound to an aromatic (not necessary the same aromatic ring). 4J: for this SMARTS the explanation of the A
point is valid.
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the training (80% of the substances) and the test (20% of
the substances) sets of the model.
The present study includes new data [10,11], carefully

checked by the authors. The EURAS [10] only reports
reliable BCF data for the fish indicated in the OECD
305 guidelines [4]. Instead, for the Arnot et al. [11] it
was necessary to extract the most reliable BCF data
(overall score of 1; endpoint 2: BCF-total water concen-
tration) for the fish recommended by OECD 305 guide-
lines (Danio rerio, Pimephales promelas, Cyprinus
carpio, Oryzias latipes, Poecilia reticulata, Lepomis
macrochirus, Oncorhynchus mykiss and Gasterosteus
aculeatus). For both the datasets, we further checked all
chemicals, verifying the chemical structure (searching
and checking the SMILES code) using public database
online (ChemIDplus [14], PubChem Compound [15],
Biodegradation and Bioconcentration of the Existing
Chemical Substances [16], EPA DSSTox Search Tool
[17], IBM Chemical Search Alpha [18] and InChI Con-
verter [19]). All the chemicals with too little information
to find the structure, the inorganic compounds, the iso-
mer mixture, the metal complexes and the data from
experiments on mixtures of chemicals were eliminated.
The salts were neutralised. The list of compounds
excluded is available in Additional files 1 and 2. We
obtained 172 new compounds (reported in Additional
file 3).
The chemical and experimental data of the CAESAR

model are available at the CAESAR web site [8].

The model
Details of the model have been published [9]. Briefly,
descriptors were calculated using Dragon [20] (Talete,
Milano, Italy) and MDL [21]. The model combines
results of two independent models, offering greater
accuracy. The two models were developed using support
vector machine (SVM). The program R [22] and Matlab
[23] were used to build up the model.

Model validation
Within CAESAR the models were validated by both
internal and external validation. The external validation
was done in the past [9] using about 20% of the original
compounds available when we started modelling. Here,
the model was tested using a new external set obtained
by combining the EURAS and the Arnot datasets,
excluding the compounds already included in the CAE-
SAR dataset. For the comparison we used the results of
predictions for the model developed by Meylan et al.
[24,25] and implemented in the BCFBAF v3.00 included
into EPI Suite v4.0 [7].

The SDEP was calculated according to:

SDEP
oi pi
n

= ( )2

where oi are the observed values, pi the predicted
values and n the number of values.

Classification approach
The 635 compounds that form the complete dataset used
for this work were split into training (370 compounds),
first validation (93) and external sets (used as the second
validation set of 172 compounds) of the CAESAR model.
Because some of them are not in the applicability domain
of the model, the three sets were reduced to 327, 81 and
119 compounds respectively. The percentage of the total
compounds predicted is given without considering those
that are outside the applicability domain. To get more
conservative results, all the compounds near the two
thresholds for B and vB compounds were raised 0.5 log
units. To do this compounds between 2.8 and 3.3 were
predicted as 3.31 and compounds between 3.31 and 3.7
as 3.71. Table 6 shows this modification.
Similarly, we split the 635 compounds into a training (as

indicated by BCFBAF v3.00), test and external (never used
by BCFBAF v3.00) sets. The results were analysed, making
the confusion matrix reported in Table 7. In this case only
one compound was outside the applicability domain of the
model (defined from the molecular weight and logP), but
it is well predicted, so it was not eliminated.

Applicability domain
To evaluate the applicability domain we used three
approaches. Additional 4 shows an example of CAESAR
prediction for two compounds: octamethylcyclotetrasi-
loxane and carbon disulfide.
First approach: chemical descriptor space
The values for the training set of the eight descriptors in
the combined model were used to define their ranges of
validity. The CAESAR software gives a warning in this
case.
Second approach: rules
A series of fragments, representing the compounds with
greater uncertainty, were manually identified by search-
ing among the structures with highest error (greater
than 1 log unit) or misclassified (predicted nB when
they are vB, or vice versa). These chemical features have
been implemented in our model using short strings
called SMARTS to define fragments. In addition, in this
case the system gives the user a warning. SMARTS
allows to specify substructures that are straightforward
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extensions of SMILES. Thus, flexible and efficient sub-
structure-search specifications can be made in a way
that is meaningful to chemists.
Two free programs have been used to do that: Mar-

vinSketch [26] and Daylight Depict SMARTS Match
[27]. The first is an advanced, Java-based chemical edi-
tor for drawing chemical structures, queries and reac-
tions. We used it to draw 11 SMARTS fragments. To
check the match between SMARTS and the actual sub-
structure of interest, the Daylight Depict SMARTS
Match was used, a web application based on Java code
[28]. In this program the structure, depicted by a
SMILES, is checked to find the fragment represented by
the SMARTS.
The list of the SMARTS used in the model is reported

in Figure 5.
Third approach: similarity tool
On the basis of several Dragon descriptors encoding dif-
ferent bi-dimensional characteristics of the molecules, a
similarity index was developed to retrieve similar com-
pounds from the CAESAR dataset, directly linked to the
CAESAR models. More details of these tools are given in
the paper on developmental toxicity [29], in this issue.

Implementation in Java (the applet)
To facilitate the user, the model developed in other lan-
guages was implemented in Java. The software involves
a dialogue between the server and the user, through the
web. All calculations are done on the server. The user
needs Java 1.6, which can be freely downloaded at the
Sun Microsystem site [28]. For further description of
the applet see [29].

LogP - logBCF relationship
For this comparison we used only experimental logP
values obtained from the Arnot database and the internal
database of KOWWIN v1.67 (included into EPISuite v4.0
[7]). The experimental BCF values used for the compari-
son were obtained from two sources [9,10]. When two
different logP or BCF values were reported, we used the
average. In total, 454 compounds (on the 635 available)
had an experimental logP value and were tested.

Additional file 1: Compounds eliminated from the EURAS database
[10] and the reasons for exclusion. The CAS number and the reasons
for exclusion are reported.

Additional file 2: Compounds eliminated from the Arnot database
[11] and the reasons for exclusion. The CAS number and the reasons
for exclusion are reported.

Additional file 3: External dataset. It reports the identification number,
the CAS number, the chemical name, the SMILES, the source database (A
for the Arnot database [11], E for the EURAS [10]), the experimental logP
(the highest value of those reported in the Arnot database [11] and in
the EPI [7] one), the mean of the experimental BCF and CAESAR hybrid
model prediction.

Additional file 4: Two examples of the result sheets provided by
CAESAR with indications of low reliability (chemicals outside the
applicability domain).
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