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Abstract 

Cancer is a deadly illness with a convoluted pathogenesis. The most prevalent restrictions that frequently result 
in treatment failure for cancer chemotherapy include lack of selectivity, cytotoxicity, and multidrug resistance. Thus, 
considerable efforts have been focused in recent years on the establishment of a modernistic sector termed nano-
oncology, which offers the option of employing nanoparticles (NPs) with the objective of detecting, targeting, 
and treating malignant disorders. NPs offer a focused approach compared to conventional anticancer methods, 
preventing negative side effects. In the present work, a successful synthetic process was used to create magnetic 
cobalt cores with an AgNPs shell to form bimetallic nanocomposites CoAg, then functionalized with Cis forming 
novel CoAg@Cis nanohybrid. The morphology and optical properties were determined by TEM, DLS, FTIRs and UV–vis 
spectroscopy, furthermore, anticancer effect of CoAg and CoAg@Cis nanohybrids were estimated using MTT assay 
on MCF7 and HCT cell lines. Our results showed that Co@Ag core shell is about 15 nm were formed with dark CoNPs 
core and AgNPs shell with less darkness than the core, moreover, CoAg@Cis has diameter about 25 nm which are 
bigger in size than Co@Ag core shell demonstrating the loading of Cis. It was observed that Cis, CoAg and CoAg@Cis 
induced a decline in cell survival and peaked at around 65%, 73%and 66% on MCF7 and 80%, 76%and 78% on HCT 
at 100 µg/ml respectively. Compared to Cis alone, CoAg and CoAg@Cis caused a significant decrease in cell viability. 
These findings suggest that the synthesized CoAg can be used as a powerful anticancer drug carrier.
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Introduction
Cancer has an unfortunate prognosis due to its aggres-
siveness and lack of effective treatments, and its occur-
rence is rising at a startling rate. The optimal type of 
cancer therapy has long been sought after, but present 
therapies are inadequate because most lack sensitivity, 
specificity, and affordability. Due to the severe side effects 
of conventional anticancer therapy and the high concen-
tration of therapeutic medications utilized, a treatment 
plan that maximizes the drug’s effectiveness on cancer 

cells while minimizing its effectiveness on healthy, rapidly 
dividing cells is required. Recent research has focused on 
using nanoparticles to deliver anticancer drugs to cancer 
cells since angiogenesis makes tumors more permeable 
to these delivery systems. Cobalt (Co) transition metal 
compounds have strong antibacterial properties and 
anticancer activities [1–4]. Metallic nanoparticle-loaded 
magnetic cores could be effective nano-carriers for effec-
tive medicine delivery at infectious areas [5–8]. Silver 
nanoparticles (AgNPs), which are essentially one of the 
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major qualities for good conductivity, chemical stability, 
relative decreased toxicity, and outstanding therapeutic 
potential are among the nanoparticles being explored [9–
13]. It has also been investigated as a means of delivering 
therapeutic material to the nucleus, thereby focusing on 
sick cells [6, 14]. There are many factors that may have 
an influence on the biological activity of AgNPs, these 
factors include size distribution, morphology, surface 
charge, surface chemistry, capping agents [15–17].

Co has been used as the core material in a variety of 
nanocomposite materials, such as cobalt-gold (Co@
Au), cobalt-copper (Co@Cu), cobalt–platinum (Co@
Pt), and cobalt-silver (Co@Ag) nanoparticles. The key 
benefits of using Co as a core material Combined with 
other non-magnetic materials like Ag, Au, and Cu, were 
the magnetoresistance, excellent stability even at greater 
temperatures, both of which are desired qualities in mul-
tipurpose applications. Numerous Bimetallic hetero-
nanostructures are created through chemical, physical, 
and biological methods; However, because it is easy to 
handle, chemical reduction technique might be beneficial 
cost efficiency and gives excellent quality, purity, thermal 
stability and particle size adjustment [18–21]. Clinical 
studies have demonstrated the effectiveness of conven-
tional chemotherapeutic medications like Cisplatin (Cis) 
in treating a variety of cancers, including sarcomas and 
tumors of the soft tissues, bones, muscles, and blood ves-
sels [22–24].

As the first platinum-based medication to receive 
US-FDA approval, cisplatin [cis-diamine platinum (II) 
dichloride] is frequently used as the drug of choice for 
treating a variety of cancers [5, 6, 25]. Through a variety 
of biochemical pathways, cisplatin interacts with cel-
lular macromolecules and causes cytotoxicity by bind-
ing to DNA and creating intra-strand DNA adducts that 
prevent DNA synthesis and cell development [26]. Due 
to their potential use in numerous biomedical applica-
tions, metallic nanoparticles’ distinctive optical, electri-
cal, and biological characteristics have drawn substantial 
attention [27–29]. controlled release, drug targeting, and 
much higher bioavailability of medications are all fea-
tures of nanodrug delivery systems which greatly over-
come the weaknesses of traditional drug delivery [30–34]. 
According to earlier research, poly-nano-complexes and 
anticancer medications can boost the anticancer drug 
accumulation in tumor cells for a more effective treat-
ment outcome [35–37]. AgNPs exhibit a synergistic effect 
and a cytotoxic effect on cell viability [13], which play a 
key part in the antitumor action. AgNPs help collect and 
deliver medications into cancer cells, and they also pre-
vent cancer metabolism and tumor growth. According to 
earlier research, AgNPs can cause cell death both in vivo 
and in  vitro by an apoptotic mechanism that is driven 

by reactive oxygen species (ROS) [35, 38–40]. Here, we 
investigate the formation of a novel biocompatible nan-
odrug by combining CoAg and Cis in order to increase 
the therapeutic index on MCF7 and HCT Cell Lines.

Material and methods
Preparation of CoAg nanohybrid
In the First step cobalt nanoparticles (CoNPs) prepared 
by metal salt reduction method in which 1 gm poly 
vinyl alcohol (PVA) dissolved in 20 ml warm water after 
complete dissolve 3  ml (0.05  M) Co were added with 
continuous stirring for 15 min. Then 5 ml (0.05) sodium 
borohydride drop wised with stirring until become 
completely dark. The second step is coating CoNPs with 
AgNPs as a way to stabilize the CoNPs because of their 
relative low stability in air due to the smaller size [41]. 
The CoAg were prepared by reducing silver nitrate in 
the presence of pre-synthesized CoNPs which act like 
‘‘seeds’’ or nucleation sites for the resultant CoAg [1, 2]. 
In this step 7 ml of the prepared CoNPs were stirred with 
7 ml (0.05M) AgNO3 for 15 min in dark conditions, then 
5  ml (0.05  M) sodium borohydride was added into the 
flask drop wise under the stirring this slowly injection to 
avoid mass production of pure AgNPs. A dark yellowish 
color results from the reduction process and denotes the 
creation of CoAg [20].

Preparation of CoAg@Cis
In this experiment 5 ml of 0.1 mg/ml Cisplatin was added 
drop wised to 5  ml of the prepared CoAg sample with 
continuous stirring for 30 min in dark conditions.

Photostability of CoAg and CoAg@Cis
The photostability of CoAg and CoAg@Cis have been 
studied by irradiation with light emitting diode (LED), 
(490  nm and 250  mW). Before exposure, the solution’s 
absorption spectra were measured, and then it is 
irradiated with the light source. To track any spectrum 
changes following irradiation, the absorption spectra 
have been monitored at various time intervals.

Characterization of CoAg and CoAg@Cis
UV–visible absorbance spectra were measured using 
a double beam spectrophotometer (PG instrument, 
T80 + , UK). 300  µl from (CoAg, Cis and CoAg@Cis) 
were diluted to 3 ml with distilled water and absorption 
has been recorded. For each sample the spectra have 
been compared with distilled water as a reference. 
Transmission electron microscope JEOL (JEM-1400 
TEM) and TEM lab FA-CURP, Faculty of Agriculture, 
Cairo University Research Park, were used to examine 
the morphology of the produced solutions. Shimadzu 
FT-IR 8400 FT-IR spectrometer was used to do IR 
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measurements in the 500–4500  cm–1 range. CoAg, 
Cis, and CoAg@Cis prepared samples were dried with 
a lyophilizer. A potassium bromide (KBr) pellet was 
used to dilute the IR spectra of the powdered materials. 
The XRD analysis was done using a Bruker AXS D8 
Advance x-ray diffractometer with a CuKα source at 
rate 5°. Using a DLS system and a Zeta sizer 300 HAS 
(Malvern Instruments, Malvern, UK), the particle size 
and surface charges of CoAg and CoAg@Cis were 
examined. The average zeta potential was calculated 
following a 60-s analysis. Without using any dilution, 
the zeta potential of the nanoparticulate dispersion was 
established.

Cytotoxicity assay
Cell line purchased from National Cancer Institute 
(NCI), Cairo, Egypt and was preserved as “monolayer 
culture” using RPMI medium supplemented with 10% 
FBS and 2% Pen/Strep. Cells were incubated at 37  °C 
in 5% CO2 in a high humidity atmosphere in a water 
jacketed incubator (Thermo Fisher Scientific USA). 
The lines were repetitively sub-cultured to be kept 
in the exponential growth phase. Sterile conditions 
were achieved by working under an equipped laminar 
flow (Microflow Laminar flow cabinet, MDH limited, 
Hamsphire SP105AA, U.K.). Cells were grouped 
into control group and treated groups with different 
concentration (12.5, 25, 50, and 100  µg/ml) of Cis, 
CoAg, CoAg@Cis. After 48  h, add 10  μl of the MTT 
reagent (concentration 0.5  mg/ml) to each well. 
Incubate the microplate for 4  h. Add 100  μl of the 
Solubilization solution into each well. After complete 
solubilization of the purple formazan crystals, measure 
the absorbance of the samples using a microplate 
(ELISA) reader. The wavelength to measure absorbance 
of the formazan product is570  nm. The cell viability 
percentage was calculated using the following equation:

where, ODS stands for the sample’s mean optical density, 
while ODC is control’s mean optical density.

Statistical analysis
The results were displayed by a graph of percentage of cell 
viability versus the concentrations of the tested materials 
using. Graphpad Prism 8.4.3 statistical analysis program 
was used to compile the data. Tukey’s multiple compari-
son test was used for statistical analysis of transfection 
assay results and the data obtained as a mean ± standard 
deviation. Significant differences were defined as those 
with a probability p ≤ 0.05.

The cell viability (%) = [ODS/ODC] × 100.

Results and discussion
Synthesize of CoNPs, with narrow size distributions 
and controlled properties, have strong impact on the 
development of magnetic sensors and other biomedical 
applications. CoNPs are usually synthesized by the 
reduction of Cobalt salts [42, 43].

In this work we have thought about the synthesis of 
CoNPs in water-based solution and the method was 
achieved by the reduction of the metal salt with strong 
reducing agent in the presence of a long chain surfactant 
PVA (poly vinyl alcohol) polymer of predetermined 
concentration to ensure the high colloidal stability, 
applicable in biological applications and also the method 
achieves the advantage of the simple and cheap chemistry 
[44, 45]. The polar functional groups of the polymer are 
deducted to introduce a considerable hydrogen bonding 
between the surface of the CoNPs and the polymer chains 
and also may be responsible for the cross linking between 
the polymer chains as well. The synthesis procedure for 
CoAg consists of two stages: the first is the reduction of 
cobalt ion, and the second is the reduction of silver ions 
in the presence of prepared CoNPs as seeds, this process 
can be outlined by the following Equations.

Then, silver ions are reduced by hydrogen gas which is 
produced by the hydrolysis of sodium borohydride. This 
led to formations of Ag atoms which diffuse to Co metals 
and form CoAg as shown of our previous work [20].

These CoAg in aqueous solution are stable up to 
10  months without the observation of cobalt oxide. 
Another evidence for the presence of bimetallic nano-
composites comes from the optical absorption study of 
each case. The appearance of the plasmon band for the 
AgNPs implies that silver metal coexists with the CoNPs. 
In Fig. 1a, the absorption peak of Cis is at about 302 nm, 
hence Ag NPs, in a previous researches has a sharp 
absorption peak around 400 nm [35–37] the absorption 
curve of Co@Ag, shows a sharp peak at 410  nm which 
indicates the formation of Ag shell on the surface of Co 
nanoparticle core, upon Cis addition on CoAg core shell, 
broadening and slight red shift from 410 to 425  nm for 
the CoAg@Cis nanohybrid which indicate successful 
conjugation of Cis to CoAg. In (Fig. 1b), CoAg, CoAg@
Cis solutions appear to be uniform and CoAg@Cis much 
darker in color compared with the CoAg which strongly 
suggested the incorporation of Cis with CoAg and form-
ing CoAg@Cis.

CoAg@Cis nanohybrid was examined using FT-IR 
studies in Fig.  2, the IR spectra of free Cis, CoAg and 

4Co+2
+NaBH4+3H2O → 4Co0(metal)+Na++B(OH)3+7H+.

NaBH4+4H2O → NaOH+ B(OH)3+4H2

(

gas
)

.
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CoAg@Cis are shown in Fig. 2, Cis solution show bands 
at 3.460  cm−1, 2.922  cm−1, 1.638  cm−1 and 1.105  cm−1 
corresponding to O–H stretching, aldehydic C–H 
stretching, C–N stretch vibration, and O–H stretch 
respectively. [46] And FTIRs for CoAg nanohybrid show 
bands in the region between 3953  cm−1 to 3448  cm−1 
were assigned to O–H stretching and–C–H– stretch-
ing of alkanes. The peaks 1637 cm−1 correspond to C–N 
stretch vibration, bands from 1244  cm−1 to 1034  cm−1 
correspond to primary and secondary amides of N–H 
(bond) of and –C–N– stretching vibration of amines 
[47]. In CoAg@Cis, a decrease in intensity of all bands 
were observed and O–H stretching and–C–H– stretch-
ing of alkanes become sharper with blue shift from 
3448 cm−1 to 3439 cm−1. In addition, there were slightly 
blue shifts for C–N stretching to1632  cm−1. The free –
NH group may be involved in the binding of Cis on the 

CoAg confirming the successful conjugation of Cisplatin 
on CoAg nanohybrid [30].

Crystallinity is one of the major factors that affect the 
mechanical properties of nanoparticles and nanocom-
posites. As shown in Fig.  3 The structures of the syn-
thesized products were characterized using powder 
X-ray diffraction (XRD) patterns diffractometer (Bruker; 
model D8 Advance) with monochromatic Cu-K radiation 
(1.54178 Å). The sharp peaks appeared in the Fig. 3a at 
2θ = 27, 30.1, 36.7, 44.1, 48.5 and 57 degrees due to the 
platinum in the Cis. [48] The characteristic peaks for the 
Ag was observed in Fig. 3b at 2θ = 30°, 35.5°, 43°, 54°, 57° 
and 63° of planes (111), (200), (220) and (311) of FCC 
with an average crystallite size of 8 nm.[49]Also The char-
acteristic peaks of Co was observed at 2θ = 44° of plane 
(111) with low intensity due to it is a core and covered 
with a shell of Ag. [50] This overlapping between the two 
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Fig. 3  X-ray diffraction (XRD) patterns of (a) Cis, (b) CoAg, (c) CoAg@Cis
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Fig. 4  TEM Images of (a) CoAg (b) CoAg@Cis (magnification 20 nm)
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peaks indicate the bimetallic crystalline nature of the 
CoAg. Also, The XRD pattern of the PVA revealed strong 
crystalline reflections at around 2θ = 19.92° and a shoul-
der at 22.74°. The two peaks are characteristic of PVA, 
representing reflections from (101) and (200). [51] The 
CoAg@cis sample in (Fig.  3c) shows a broad PVA peak 
at 2θ = 19.92° and a shoulder at 22.74° and other peaks 
at 27, 30.1,36.7, 44.1, 48.5 and 57 degrees corresponding 
to the Cis. As appeared in Fig.  3c the Cis peaks appear 
with the interference with CoAg at 2θ = 10–25 degrees, 
this is because Cis to CoAg ratio in the composite is 
very small, so the XRD confirmed that these results were 
strong evidence for successful cisplatin loaded into CoAg 
nanohybrid.

In Fig.  4a, the TEM image exposes that Co@Ag core 
shell with diameters at about 10  nm were formed with 
dark CoNPs core diameters at about 4  nm and AgNPs 

shell with less darkness than the core. Figure  4b, shows 
TEM image of CoAg@Cis with diameters at about 15 nm 
which are bigger in size than Co@Ag core shell demon-
strating the loading of Cis.

DLS results revealed that CoAg before and after con-
jugation process had different sizes and disparities 
which confirmed the changes in the surface of the CoAg 
due to the CoAg@Cis formation. As it can be seen in 
Fig. 5a, b the average size of the CoAg after conjugation 
with Cis drug increased from172.5  nm to be 242  nm. 
Also, zeta potential of the CoAg was − 1.7  mV and it 
becomes − 4.6 mV after the conjugation of Cis and form-
ing CoAg@Cis which is more stable for about 10 months 
as it can be seen in Fig. 6a, b and Table 1.

CoAg and CoAg@Cis are promising materials which 
can be used in photothermal therapy (PTT) for cancer, 
which highlights the importance of the requirement for 

Fig. 5  Particle size of (a) CoAg (b) CoAg@Cis
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photostability. When it is decided to use these particles 
as PTT hyperthermic agents, the target tissue or cells 
will be subjected to laser light. By exposing CoAg and 
CoAg@Cis to the same LED light source for the same 
exposure period, we must evaluate the stability of these 

two materials. Surface Plasmon Resonance (SPR) of the 
exposed CoAg and CoAg@Cis is unaffected by the LED 
light source, as shown in Fig. 7a, b. This indicates that the 
produced nanomaterials are photothermally stable, and 
they will be effective in PTT [12].

In vitro cytotoxicity of Cis, CoAg and CoAg@Cis.
MTT assay was used to determine if the nanomaterials 
were biocompatible in  vitro at various concentrations. 
Exponentially dividing cells were treated with increasing 
concentrations (12.5, 25, 50, and 100 µg/ml) of Cis, CoAg, 
and CoAg@Cis on MCF7 and HCT cell lines. Our results 
were in accordance with previously reported work, as 
shown in Fig.  8a, in comparison to the corresponding 

Fig. 6  zeta potential of (a) CoAg (b) CoAg@Cis

Table 1  The parameters of CoAg and CoAg@Cis

CoAg CoAg@Cis

Average zeta potential − 1.7 mv − 4.6 mv

Average hydrodynamic diameter 
(DLS)

172.5 nm 242 nm

Average Size (TEM) 10 nm 15 nm
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control, there was a concentration-dependent decline in 
cellular proliferation. Cis, CoAg, and CoAg@Cis revealed 
a significant decrease in cell viability. It is shown with 
IC50 value of about 71.2%, 76% and 6.5% on MCF7 and 
38.2%, 78%and 8.7% on HCT respectively. Comparing 
CoAg@Cis to native Cis we can observe that CoAg@Cis 
nanohybrid gives very high significant inhibition on both 
MCF7 and HCT cell lines as in Table 2 [1, 52].

The ability of cisplatin to crosslink with DNA’s purine 
bases has been credited as the drug’s mechanism of 
action. This crosslinking prevents DNA from being 
repaired, damages DNA, and kills cancer cells. Cisplatin 
interacts with cellular macromolecules through several 
pharmacological mechanisms. It then causes death 
by attaching to DNA and creating intra-strand DNA 

adducts that prevent DNA synthesis and cell growth. 
Its primary molecular mechanism of action has been 
linked to the activation of various signal transduction 
pathways, induction of p53 signaling and cell cycle 
arrest, upregulation of pro-apoptotic genes/proteins, and 
downregulation of proto-oncogenes and other tumor-
promoting genes as a result of the production of reactive 
oxygen species through lipid peroxidation [26].

The surface of cancer cells is negatively charged 
because of the release of lactic acid, according to exten-
sive research. As a result, the concentration, hydrophi-
licity, surface charge, and size of the nanomaterial may 
affect the endocytosis of the nanoparticles. Addition-
ally, the different cell types consume nanomaterials in 
different ways [53]. The improvement brought about by 
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CoAg@Cis nanohybrid’s internalization by an endocy-
tosis mechanism is one explanation for the elevation of 
its activity. Comparing the passive diffusion method of 
free Cis into cells to that of nanoparticles, endocytosis or 

phagocytosis typically results in the nonspecific internal-
ization of nanoparticles into cells [54].

Conclusion
In conclusion, we have reported the synthesis of novel 
theragnostic nanohybrid agent for cisplatin delivery 
systems. The results of this study dispense basic 
information for synthesizing CoAg and CoAg@Cis 
nanohybrid and their anticancer effect on MCF7 and 
HCT cell lines. Our results revealed that CoAg@Cis 
nanohybrid were successfully formed as indicated from 
broadening and red shift in absorption band of CoAg 
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Fig. 8  toxicity test at different concentrations (µg/ml) of Cis, CoAg, and CoAg@Cis on (a) MCF-7 (b) HCT cell lines

Table 2  IC50 values for Cis, CoAg and CoAg@Cis on MCF-7 and 
HCT cell lines

Cell lines Cis IC50 (µg/ml) CoAg IC50 
(µg/ml)

CoAg@Cis 
IC50 (µg/
ml)

MCF-7 71.2 76 6.5

HCT 38.2 78.5 8.7
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after Cis addition to increase in particle size, moreover 
the enhanced cytotoxic effect of CoAg@Cis nanohybrid 
than free Cis is an indication that CoAg can be used 
as drug carrier. CoAg@Cis nanohybrid has more 
inhibition with IC50 value decreased to 8.7 µg/ml on 
HCT and 6.5 µg/ml on MCF7. Future work is to use the 
prepared nanohybrids for photothermal chemotherapy 
combine treatment for in vitro and in vivo treatment.
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