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Abstract
Lung cancer is a disease with a high mortality rate and it is the number one cause of cancer death globally. 
Approximately 12–14% of non-small cell lung cancers are caused by mutations in KRASG12C. The KRASG12C is one 
of the most prevalent mutants in lung cancer patients. KRAS was first considered undruggable. The sotorasib and 
adagrasib are the recently approved drugs that selectively target KRASG12C, and offer new treatment approaches 
to enhance patient outcomes however drug resistance frequently arises. Drug development is a challenging, 
expensive, and time-consuming process. Recently, machine-learning-based virtual screening are used for the 
development of new drugs. In this study, we performed machine-learning-based virtual screening followed by 
molecular docking, all atoms molecular dynamics simulation, and binding energy calculations for the identifications 
of new inhibitors against the KRASG12C mutant. In this study, four machine learning models including, random 
forest, k-nearest neighbors, Gaussian naïve Bayes, and support vector machine were used. By using an external 
dataset and 5-fold cross-validation, the developed models were validated. Among all the models the performance 
of the random forest (RF) model was best on the train/test dataset and external dataset. The random forest model 
was further used for the virtual screening of the ZINC15 database, in-house database, Pakistani phytochemicals, 
and South African Natural Products database. A total of 100 ns MD simulation was performed for the four best 
docking score complexes as well as the standard compound in complex with KRASG12C. Furthermore, the top four 
hits revealed greater stability and greater binding affinities for KRASG12C compared to the standard drug. These new 
hits have the potential to inhibit KRASG12C and may help to prevent KRAS-associated lung cancer. All the datasets 
used in this study can be freely available at (https://github.com/Amar-Ajmal/Datasets-for-KRAS).
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Introduction
The most frequently mutated gene family in human 
malignancies is RAS including KRAS, NRAS, and HRAS. 
KRAS is one of the most prevalent isoforms among the 
RAS family, being found in 85% of pancreatic, 45% of 
colo-rectal, and 30% of lung cancer [1]. KRAS is a mem-
ber of the broad family of proteins known as GTPases. 
KRAS is a plasma membrane-bound protein. KRAS 
functions as a molecular switch for downstream sig-
nal transduction by cycling between the on (GTP) and 
off (GDP) states [2]. Every year, about 50,000 people in 
the United States alone receive a new diagnosis of lung 
cancer caused by KRAS mutations [3]. Moreover, a his-
tory of smoking is frequently related to KRAS-driven 
lung malignancies [4]. The KRAS gene has six exons and 
is found on chromosome 12p11.1–12.2. KRAS is a small 
protein that is 21 KDa in size. The two domains of KRAS 
G and C domains, which are made up of six beta strands 
encircled by five alpha-helices, are the protein’s two func-
tional domains. The C terminal domain is lipid-modi-
fied which helps in the membrane anchoring [5]. The G 
domain of KRAS is one of the functional biological areas 
which has 1-166 residues. Other crucial KRAS functional 
regions include the switch I and switch II domains, which 
operate as a binding interface for effector proteins. The 
Walker A motif, a short P-loop component with 10–14 
residues, is present in the KRAS structure. In the P-loop 
or switch − 2 region the cancer mutation hotspots are 
found predominantly [6, 7]. The G-domain, a highly con-
served region that contains switch I and switch II loops 
and is involved in GDP-GTP exchange, is one of the pro-
tein’s three primary domains [4]. KRAS transmits signals 
from the cell membrane to the nucleus when it is active, 
activating a variety of signaling pathways after receptor 
tyrosine kinase (RTK) activation (EGFR, ALK, or cMET) 
and ultimately causing the activation of transcription 
factors that regulate cell growth (cell proliferation and 
cell survival) and differentiation [8]. KRAS is activated 
when GTP binds to KRAS and causes alterations in the 
switch I and switch II loops of the G-domain. “KRAS-
GTP directly interacts with and activates a number of 
downstream effector proteins in the active state, includ-
ing RAF and PI3K”. A-RAF, B-RAF, and C-RAF are the 
three subtypes of serine-threonine kinase. The RAF in 
an active state activates MEK which activates ERK which 
promotes cell growth and proliferation [9]. The GTP and 
GDP-bound forms of the KRAS protein cycle during its 
24-hour half-life with resynthesis [10]. KRAS was first 
considered undruggable due to lack of binding pocket 
which can be accessible to small molecules. However, 
sotorasib and adagrasib which just have recently been 
discovered and selectively target KRASG12, offer new 
treatment approaches to enhance patient outcomes. Due 
to the development of sotorasib and adagrasib KRASG12C 

is now druggable [11]. Early adaptive feedback reactiva-
tion of signaling pathways has impeded prior attempts 
to target the RAS-RAF-MEK pathway and resulted in 
treatment resistance. Currently, in vitro and the clinical 
setting, have described that secondary KRAS mutations 
confer acquired resistance to KRASG12 inhibitors [12]. 
Drug design and development is a challenging, expen-
sive, and time-consuming procedure. It involves the 
discovery of promising targets and the design of thera-
peutically effective and safe drugs against promising tar-
gets. Computer-aided drug design (CADD), employs a 
number of computational and statistical techniques to 
efficiently assess biological target selection and hit iden-
tification [13, 14]. The process of drug development can 
be sped up by using advanced computational techniques. 
For the purpose of drug development, CADD can further 
make use of the integrated biochemical space to improve 
safety, and efficacy [15]. A number of machine learning 
algorithms are increasingly used in the drug development 
process. Only when reliable and accurate pre-processed 
data are combined with efficient computational methods 
and tools successful applications in the drug-designing 
process can be achieved [16] In this study, machine learn-
ing-based virtual screening was performed for the identi-
fication of new inhibitors against KRASG12.

Materials and methods
Dataset preparation
The active compounds against KRASG12 mutant with 
experimentally determined IC50 values were retrieved 
from the Binding DB [17]. The compounds in SDF for-
mat were imported to MOE software. Moreover, the 
DUD-E web database was accessed and the correspond-
ing decoys were generated [18]. The class label was added 
to the dataset all the inactive compounds were labeled as 
0 and the active compounds were labeled as 1. The entire 
dataset was split into train and test sets (70% and 30%) 
respectively [19]. Prior to train and test set splits 20% of 
the data was separated from the whole dataset which was 
used as an independent dataset for external validation.

Molecular descriptors calculation and features selection
MOE software was used for 2D feature calculation [20, 
21]. A total of 208 2D features were calculated. In order 
to avoid overfitting and to enhance the generalizability of 
the models, the dataset was preprocessed which included 
the removal of zero and not available (NA) values. To 
develop a model that is easy to understand and compu-
tationally cheap, it is essential to choose feature subsets 
that are most relevant to predictive targets. We used sup-
port SVM-RFE to choose features in order to collect as 
useful information as possible [22].
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Machine learning models
Four models including k-nearest neighbors, support 
vector machine, naïve Bayes, and random forest mod-
els were developed using open-source python v3.9. The 
Scikit-learn library of python was used for model devel-
opment [23].

K-nearest neighbor (kNN)
k-Nearest Neighbors (KNN) is a binary classification 
algorithm that classifies the data by calculating the dis-
tance between the nearest neighbors [24]. The number of 
neighbors considered for classification is represented by 
the parameter n_neighbors [25]. The best k value in this 
investigation was found as 11.

Naïve Bayesian (NB)
The naive Bayesian is a reliable classification algorithm 
that is based on the Bayes theorem. A data set can be 
classified using the NB model under the suppositions 
that each attribute contributes equally and independently 
to a dataset [26]. In this work, python v3.9 was used for 
NB model generation.

Random forest model
Breiman introduced the categorization algorithm known 
as RF [27]. Random Forest (RF) is a popular model that 
can be employed for data classification or regression 
tasks [28]. The tree of the random forest is trained using 
a bootstrap sample and the majority vote of the trees 
determines the predictions. The two primary hyperpa-
rameters that were optimized during model construction 
were max_features and n_estimators, which represent 
the number of trees constructed prior to predictions [25]. 
The number of estimations from 100 to 500 was taken 
into consideration.

Support vector machine (SVM)
The SVM model is frequently used to solve the problems 
of classification, pattern recognition, and regression [29]. 
The multiclass classification problems can also be solved 
by SVM. SVM draws margin lines (support vectors) par-
allel to a separable hyper-plane between the data classes. 
To transform the low dimensional data to higher dimen-
sional space SVM model use different kernel trick, which 
includes the linear, polynomial, sigmoid, and radial base 
function [30]. We used RBF and the grid search approach 
to determine the best values for the C and γ param-
eters. Finally, the optimal values were determined to be 
C = 1000 and γ = 1.

Performance evaluation of models
Different performance evaluation parameters are used in 
machine learning to evaluate how effective an intelligent 
model is [31]. When a classification system generates true 

and false predictions, they are kept in a confusion matrix 
[32]. In many classification models, accuracy is used to 
evaluate the quality of the classification algorithm, but in 
some cases (such as with imbalanced datasets), accuracy 
alone is insufficient to assess a prediction model’s over-
all effectiveness [33]. The MCC parameter is considered 
an important indicator for measuring the performance of 
binary classification. The highest MCC value is an indica-
tion of the good performance of the model [34].

The receiver operating characteristic (ROC) curve is 
also effective to evaluate the performance of the models. 
A ROC curve can visually represent the true positive rate 
against the false positive rate [35]. In this study, various 
parameters such as sensitivity, specificity, accuracy, and 
MCC were calculated for the developed models. To fur-
ther evaluate the performance of the best model the area 
under the ROC curve (AUC), which is used to rate the 
models, was also calculated. The perfect model has an 
AUC value of 1 while a value of 0.5 indicates the random 
performance of the model [36].

Models validation
The three methods of validation most frequently 
employed by researchers are the independent tests, k-fold 
CV, and jackknife CV [37]. In order to evaluate the effec-
tiveness of our models, we used five-fold cross-validation.

Virtual screening and molecular docking study
The model with the best accuracy and MCC value was 
further used to screen a total of four databases includ-
ing the Zinc database, the South African natural product 
database, Pakistani phytochemicals, and the in-house 
database. The hits predicted by ML algorithms were 
further docked against the KRASG12C mutant. For the 
molecular docking study, the PDB structure of the recep-
tor KRASG12C mutant (PDB ID 6OIM) was retrieved 
from the RCS PDB database. As the target protein struc-
ture may be coupled to heavy atoms, water, ligands, and 
cofactors, it cannot be directly employed for molecular 
docking. Polar charges were added to the structure and 
the water molecules were removed [38]. The energy of 
the receptor was minimized using a gradient of 0.05. A 
total of 10 conformations were generated for each ligand. 
After docking completion, the best ligand conforma-
tions were evaluated for their binding interactions using 
PyMol software [39]. Furthermore, for covalent ligands, 
we employed the covalent docking protocol of MOE 
(2016) software. The Cys12 residue of the KRASG12C was 
defined as the reactive residue for covalent docking and 
Michael’s adduct reaction was used as the suitable reac-
tion type for covalent docking [40].
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All atoms MD simulation
AMBER version 20 was used to perform the simulation 
of the top best docking score complexes. The ff14SB was 
used as the force field for the protein while the General 
Amber force field (GAFF) parameters were assigned to 
the ligands [41]. A TIP3P cubic box with an 8 Å distance 
around the protein complex was used for the MD simu-
lations study. For the systems to be neutralized, counter 
ions like Na + or Cl ions were added. Energy minimiza-
tion was done in two steps prior to MD simulations. In 
the first stage, 5000 steps of steepest descent were applied 
then conjugate gradient minimization was performed 
to gradually minimize the whole system. The system’s 
temperature was increased from 0 to 300 K during MD 
simulation with constant volume and periodic bound-
ary conditions. All the systems were equilibrated for 3 ns 
with constant pressure and constant temperature [42]. 
Finally, a total of 100 ns MD simulation was performed 
for the top four protein-ligand complexes. Using the 
cpptraj module of AMBER 20 software, all of the gener-
ated MD trajectories were analyzed. The post-simulation 
analysis such as root mean square deviations (RMSD), 
root mean square fluctuations (RMSF), the radius of 
gyration (RoG), and dynamics cross-correlation map 
(DCCM) were performed using the CPPTRAJ module of 
Amber 20 after the completion of MD simulations [43].

Binding energy calculation
The MMGBSA is the most significant approach in re-
ranking the binding conformations [44]. In order to cal-
culate the binding free energy of the KRASG12C-ligand 
complexes by taking into account 2500 snapshots, we 
employed the MMPBSA.py script [45]. To estimate the 
binding free energy the following equation was used:

	∆Gbind = ∆Gcomplex− [∆Greceptor + ∆Gligand]

∆Greceptor, ∆Gligand, and ∆Gcomplex represent the 
binding energies of proteins, drugs, and complexes, 
respectively while the ∆Gbind represents the total bind-
ing energy.

The individual binding energies that make up the over-
all binding free energy, such as those that are bonded 
(Gbond), electrostatic (Gele), polar (Gpol), and nonpolar 
(Gnpol), were estimated using the following equation.

	 G = Gbond +Gele +GvdW +Gpol +G

Results
Dataset preparation
A total of 386 active compounds for KRASG12C with 
reported IC50 values were retrieved from the bind-
ing databank database. The DUDE database [45] was 

accessed to generate the inactive compounds. A total of 
1608 decoys were generated. By combining the active 
compounds and the decoys a dataset of 1994 compounds 
was prepared. The dataset was labeled with 1 and 0 indi-
cating the active and inactive compounds respectively. 
From the whole dataset, 20% of the data was separated 
which was further used as an independent dataset for 
external validations of the ML models.

Features calculation
MOE software was used to calculate a total of 208 2D 
descriptors. In order to avoid overfitting and enhance 
the generalizability of the model the dataset was prepro-
cessed by removing zero and NA values present in the 
dataset. The number of features was reduced to 172 after 
preprocessing.

Optimum features selection
Filter, wrapper, and embedding approaches are the three 
types of methods currently used by the SVM to evaluate 
the significance of variables in the dataset. In the present 
study, we used recursive feature elimination (RFE), for 
the optimum features selection. The RFE is a gold stan-
dard method among wrapper techniques [46]. Out of 172 
features, a total of 13 optimum features were selected. 
Figure  1 shows the optimum feature selection curve. 
The optimum features including PEOE_VSA + 2, PEOE_
VSA_POS, PEOE_VSA + 0, PEOE_VSA-0, SlogP_VSA3, 
SMR_VSA6, vsa_hyd, PEOE_VSA_NEG, Weight, PEOE_
VSA_HYD, Q_VSA_HYD, Q_VSA_POS, and vdw_area 
were selected using the SVM RFE technique. To improve 
each model’s performance, selected subsets of features 
were used to train all machine learning models.

Chemical space and diversity
The reliability of ML algorithm depends on the chemi-
cal diversity of a dataset. To execute the models perfectly, 
substantial chemical space is required. Figures  2 and 3 
displays the significant chemical space between logP and 
molecular weight (MW) for the train and test set respec-
tively. A significant chemical gap between inhibitors that 
are active and those that are not, with logP and MW 
varying from 4 to 8 and 250–600 Da was found for both 
the train and test datasets.

Performance of machine learning models
The dataset was split into train and test sets with 70% of 
the data considered as a train set while 30% of the data 
was selected as a test set. Open-source python v3.9 was 
used for model generation. A number of supervised 
machine learning models including KNN, SVM, GNB, 
and RF were applied. To evaluate the model perfor-
mance different parameters such as accuracy, sensitiv-
ity, specificity, and MCC were calculated. The RF model 
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was found as the best model its performance was best on 
both the train and test set. The accuracy of RF model was 
98% on both the train and test sets. The MCC value of 
the RF model was 0.95 on the train set and 0.97 on the 
test set. The accuracy of the KNN and SVM models was 
94% on both the train and test sets while the MCC of the 
KNN model was 0.82 on the train set and 0.87 on the test 

set. The accuracy of the GNB model was 92% on the train 
set and 89% on the test set. The overall performance of 
the four generated models on the train set is summa-
rized in Table 1 while Table 2 describes the performance 
of the four models on the test set. One of the most reli-
able methods for evaluating the model performance is 
the analysis of the ROC-AUC curve. The RF model has 

Fig. 2  Chemical diversity distribution of the training set. The X-axis defined the molecular weight and Y-axis shows logP

 

Fig. 1  The feature selection curve for 2D molecular descriptors and the number of optimum features selected were 13
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achieved the highest area under the curve (AUC) value 
of 0.99 on both the train and test set, followed by KNN 
with an AUC value of 0.94 on the train and 0.93 on the 
test set. Figure 4 represents the ROC-AUC curve on the 
train set while Fig. 5 represents the ROC-AUC curve on 
the test set.

Models validation by independent dataset
A classification model’s predictive power is not only 
assessed by its MCC score and accuracy during inter-
nal validation. As a result, any machine learning-based 
model’s performance is dependent both on internal and 
external validation. For external validation of the mod-
els, an independent dataset was prepared. A total of 397 
compounds were added to the dataset with a total of 99 

compounds as active against KRASG12C while the remain-
ing were inactive compounds in the independent dataset. 
The inhibitors of the external dataset were not present in 
the train or test sets. As compared, other ML algorithms 
the RF model revealed the highest accuracy, sensitivity, 
specificity, and MCC values on the independent dataset 
(Table S1, Table S2). Since the RF model performs the 
best among all of the models, so it was used for virtual 
screening to find potent KRASG12C inhibitors. The ROC-
AUC curve for the independent dataset is presented in 
Figures S1 and S2.

Virtual screening
Four lakh compounds retrieved from the ZINC15 data-
base were passed from the Lipinski rule of 5 before the 

Table 1  Performance of ML models on the train set
Model Accuracy Sensitivity Specificity MCC Precision Recall
KNN 94% 0.95 0.94 0.82 0.74 0.86
SVM 94% 0.92 0.95 0.84 0.83 0.90
RF 98% 0.96 0.99 0.95 0.97 0.97
GNB 92% 0.85 0.94 0.77 0.70 0.90

Table 2  Performance evaluation of ML models on the test dataset
ML model Accuracy Sensitivity Specificity MCC Precision Recall
KNN 96% 0.87 0.98 0.87 0.86 0.89
SVM 94% 0.85 0.96 0.81 0.81 0.86
RF 98% 0.95 0.99 0.97 0.93 0.95
GNB 89% 0.85 0.90 0.68 0.80 0.93

Fig. 3  Chemical diversity distribution of the test set. The X-axis defined the molecular weight and Y-axis shows logP
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Fig. 5  The AUC-ROC curve on the test set for all four models

 

Fig. 4  The AUC-ROC curve on the train set for all four models
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virtual screening. Among the 4 lakh compounds, only 
1 lakh compounds were found to obey the Rule of five. 
Only sixty thousand were non-toxic so only these com-
pounds were selected for the virtual screening. The 
updated version of the South African natural product 
database contained a total of 1012 compounds that were 
used for virtual screening. Furthermore, a total of five 
thousand Pakistani phytochemicals retrieved from the 
PubChem database and a total of 2 thousand compounds 
from the in-house database were used for the virtual 
screening. A total of 101 compounds from the ZINC15 
database, 42 compounds from the Pakistani phytochemi-
cals, 23 compounds from the in-house database, and 19 
compounds from the SANCDB (South African Natural 
Compounds Data Base) were predicted as active by the 
RF (Random Forest) model.

Molecular docking analysis
The compounds predicted as active by the RF model were 
docked against the KRASG12C mutant. The docking study 
revealed that among the 101 active compounds of the 
ZINC database, the docking score of most of the com-
pounds was good. The compound ZINC001458505494 
was predicted as the covalent inhibitor of KRAS G12C. 
The docking score of compound ZINC001458505494 
was found as -7.80. The compound ZINC001436082395 
established a total of four conventional hydrogen bond 
interactions with Pro34, Tyr32, Lys16, and Ala59 residue 
of the receptor while one covalent bond with Cys12 and 
one Pi-H contact with Gln61 was also observed. Com-
pound ZINC001436082395 with an S score of -12.15 
formed one five H-bond interactions with Ser65, Glu62, 
Gly60, Gln61, and Ala66. Table S3 describes the interac-
tion pattern of the top four best compounds along with 
their docking score while Table S4 describes the drug-
like properties of the top five best docking-scored com-
pounds of the ZINC database.

Twenty-three hits were found as active against 
KRASG12C from the virtual screening of the in-house 
database. The docking analysis of these 23 compounds 
revealed that H-209 is the most potent with an S score 
of -16.16. The compound H-209 formed four H-bond 
interactions with the Cys12, Asn86, Lys88 residues, and 
one Pi-H contact with the Cys12 residue of KRASG12C. 
The compound H-164 with a docking score of -14.14 
was found as the second potent. The compound H-164 
formed hydrogen bond interactions with Gln99, Glu91, 
Glu62, Arg102, and Lys88. Compound H-237 formed a 
similar pattern of interaction with Arg102, Glu98, and 
Glu91 as established by the compound H-164. However, 
compound H-237 formed two pi-pi interactions with 
His95 cryptic pocket residue and His94. The interaction 
pattern of the top five best docking score compounds is 
present in Table S5 while the drug-like properties of the 

top 5 best compounds of the in-house database are pres-
ent in Table S6.

The virtual screening of the South African Natural 
Products database revealed a total of 19 compounds 
out of 1012 compounds as active against the KRASG12C. 
Among the 19 docked compounds the compound 
SANC00905 was the most promising covalent inhibi-
tor with an S score of -9.61. The most potent compound 
SANC00905 revealed a total of five hydrogen bond inter-
actions with Cys12, Glu62, Gln99, and Arg68 residues 
of the KRASG12C. It was also found that the SANC00905 
formed one covalent bond with the mutated Cys12 resi-
due of KRAS G12C and one H-pi contact with the His95 
cryptic pocket residue of the KRAS G12C protein. The 
interaction pattern of the top six best docking-scored 
compounds is present in Table S7 while the properties of 
the best docking-scored compounds of the SANCDB are 
present in Table S8. Furthermore, 42 compounds were 
identified as active out of the total five thousand Paki-
stani phytochemicals. Among the docked compounds 
the compound PubChem ID 11,968,893 was predicted 
as the most promising with a docking score of -18.58. 
The potent compound PubChem ID 11,968,893 formed 
a total of seven hydrogen bond interactions with Cys12, 
Gln61, Glu62, Asn86, and Lys88 residues while one Pi-H 
contact was also observed with the Lys88. The interac-
tions and docking scores of the most promising Paki-
stani phytochemicals are present in Table S9 and their 
drug-like properties are present in Table S10. Overall our 
molecular docking study revealed two covalent inhibitors 
(ZINC001458505494 and SANC00905) and two non-
covalent inhibitors (H-209, and PubChem ID 11,968,893) 
for the KRAS G12C drug target. The 3D interactions of 
the covalent inhibitors in complex with KRASG12C are 
present in Fig.  6 (A) while 3D interactions of the non-
covalent inhibitors are shown in Fig. 6 (B). The 2D inter-
actions of the best docking score compounds from all 
databases are shown in Figure S3. Table S11 displays the 
docking result of the covalent inhibitors.

Post simulation analysis
RMSD analysis
The stability of KRASG12 in complexes with the top four 
ligands was evaluated from the RMSD analysis dur-
ing the 100ns MD simulation. The stability of com-
plexes and details regarding the structural conformation 
during the simulation can be provided by the RMSD 
value. Figure S4 represent the RMSD plots for the top 
four best docking-score protein-ligand complexes and 
the standard drug sotorasib in the complex with the 
KRASG12C. All four complexes were stable during the 
MD simulation. In Replica-1 no significant deviations 
were observed in the complex H-209- KRASG12C during 
the simulation. Some minor fluctuations were observed 
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during 5–15 ns and 20–35 ns but after that, the com-
plex remained stable till the 100 ns simulation (Figure. 
S4). In Replica-2 only minor deviations were seen dur-
ing 20–25 ns in the H-209 complex after that the RMSD 
converged and a stable behavior was observed during 
the entire 100 ns MD simulation. The RMSD of com-
plex PubChem-CID11968893-KRASG12C was highly 
stable in Replica-1, and only minor fluctuations dur-
ing the 25–30 ns and 45–50 ns were observed after that 

the complex reached stability and remained stable till 
100 ns. A similar pattern of RMSD was observed for 
PubChem-CID11968893-KRASG12C in Replica-2. The 
system was found to be highly stable in both runs (Fig-
ure. S4). The complex SANC00905- KRASG12C revealed 
stable behavior during the simulation. However, some 
minor deviations during the 23–38 ns were reported in 
Replica-1, and after that the system gained stability and 
remained stable during the 100 ns MD simulation. In 

Fig. 6B  3D interactions of non-covalent inhibitors (A) H-209- KRASG12C (B) PubChem-CID11968893-KRASG12C

 

Fig. 6A  3D interactions of covalent inhibitors (A) standard drug- KRASG12C complex (B) SANC00905- KRASG12C (C) ZINC001458505494- KRASG12C
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Replica-2 the complex SANC00905- KRASG12C revealed 
a more stable behavior and only minor deviations were 
seen during 25–38 ns after that no major or minor devi-
ations were observed till 100 ns. Initially, the RMSD of 
complex ZINC001458505494- KRASG12C was high dur-
ing the first 10 ns afterward the RMSD decreased and 
reached stability but only minor deviations during 42–45 
ns and 94-98ns were found in Replica-1 and the overall 
RMSD was stable. In Replica-2 the RMSD of complex 
ZINC001458505494- KRASG12C was highly stable except 
80–90 ns. The RMSD of the standard drug in complex 
with KRASG12C was initially stable in Replica-1 but then 
some major fluctuations were found during the 60-65ns 
and 70–85 ns after that the system attain stability till 
100ns in both the Replica.

RMSF analysis
Flexibility at the residue level can be analyzed from the 
RMSF profile. The flexible and stable regions are repre-
sented by a higher and lower RMSF value respectively 
[47]. The complexes almost showed the same pattern of 
residual flexibility in Replica-1 and Replica-2. The resi-
dues 1–29, 69–100, and 105–170 revealed high stability 
during the MD run. A total of three different peaks were 
found at three different time periods (Figure S5). Initial 
peak was observed with ASP30, GLU31, TYR32, PRO34 
and THR 35, second with GLU62, GLU63, TYR64, 
SER65, ALA66, MET67, and ARG68 and third with 
ARG102, VAL103 and LYS104 residues. The residues that 
revealed great fluctuations were not the active site resi-
dues except Glu63. On the other hand, the residues lying 
in the active site were found as highly stable. Figure S5 
display the RMSF pattern of Replica 1 and Replica 2 for 
all the systems.

Compactness analysis
To comprehend the degree of compactness of each 
ligand-bound system the Gyration radius (RoG) was 
determined. To evaluate how these ligands remained 
intact with the KRASG12C during the 100 ns MD simu-
lation the RoG was calculated. Moreover, the compact-
ness of systems represents stability. A lower RoG value 
denotes greater stability and a high RoG value denotes 
an unstable system [48]. In Replica-1 and Replica-2 the 
average RoG value was determined as 15.6–15.9 Å for 
the H-209-KRASG12C complex. The average RoG of 
the PubChem-CID11968893-KRASG12C system was 
15.3–15.8 Å in Replica-1 while in Replica-2 the RoG 
was found to be 15.2–15.5 Å and the complex was 
observed as highly compact with no major deviations. 
The average RoG of the SANC00905-KRASG12C com-
plex was 15.2–15.6 Å in Replica-1 while in Replica-2 a 
similar pattern of the RoG was found. The RoG of the 
ZINC001458505494-KRASG12C was found as 15.6–16.6 

Å in Replica-1 while in Replica-2 the average RoG was 
found to be 15.4–16.4 Å. The RoG of the standard drug- 
KRASG12C complex was initially compact but increased 
from 15.2 to 16.4 Å during the 80-90ns then decreased 
after 90ns and remained compact till 100 ns. As com-
pared to all other complexes the standard drug in com-
plex with KRASG12C revealed a little unstable behavior. 
Among all the complexes the compound SANC00905 
found as the covalent inhibitors for KRAS G12C was 
more compact during MD simulation. Figure S6 displays 
the RoG plots of all the ligand-bound complexes.

Dynamic cross-correlation map (DCCM)
The negative correlations imply that residues move in 
the opposite direction, and positive correlations show 
that residues are moving in the same direction i.e. anti-
parallel and parallel direction. The residues displayed a 
positive correlation suggesting that the positive correla-
tion may be caused by ligands interactions with the active 
site residues of KRAS. The green color indicates positive 
correlation while the dark brown color revealed negative 
correlation among the residues (Fig.  7). Among all the 
simulated systems PubChem-CID11968893-KRASG12C 
complex and SANC00905-KRASG12C have the high-
est positive correlation motions followed by the com-
plex ZINC001458505494-KRASG12C. Additionally, the 
H-209-KRASG12C complex exhibits greater correlated 
and anti-correlated motion as compared to the control.

Binding energy calculation
It was found that all of the predicted active ligands in 
the complex with KRASG12C displayed strong bind-
ing affinity as compared to the control system, indi-
cating that all of the systems are more likely to be 
stable. Table  3 provides an overview of the binding 
free energy and its components determined by the 
MM-GBSA calculation. According to the findings, the 
SANC00905-KRASG12C complex had the highest nega-
tive binding free energy value (-53  kJ/mol), followed by 
the PubChem-CID11968893-KRASG12C complex (-50 kJ/
mol). As demonstrated in Table  3, all four predicted 
ligand complexes had very good binding free energy val-
ues, compared to the control indicating that they were 
more stable during the simulation. The total binding 
energy for sotorasib- KRASG12C on the other hand, was 
predicted to be around − 45  kcal/mol. These findings 
clearly imply that these ligands have more potent inhibi-
tory potential than the standard drug.

Discussion
Approximately 1.8  million people die each year due to 
lung cancer and lung cancer is considered the number 
one cause of cancer death worldwide with a high mortal-
ity rate. Approximately 84% of all lung malignancies are 
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non-small cell lung cancers (NSCLC). The five-year sur-
vival rate of NSCL cancer patients is only 25% [49]. The 
KRASG12C gene mutation is a key initiator of NSCLC 
[50]. The clinical response rates of the developed drugs 
sotorasib and adagrasib are high, and toxicity from these 
drugs is low. However, resistance often develops after 
a few months of treatment [50]. Researchers are now 
searching for new effective drugs. The process of finding 
new drugs has substantially advanced through the use 

of ML algorithms. The use of multiple ML algorithms in 
drug discovery has considerably benefited pharmaceuti-
cal industries. These algorithms are frequently used in 
predicting the bioactivity of molecules, predicting drug-
protein interactions, and optimizing the bioactivity and 
safety profile of the molecules [51]. A number of stud-
ies have been conducted on ML-based virtual screening 
[52, 53]. For instance, in our previous studies, we carried 
out ML-based virtual screening for the identification of 

Table 3  MMGBSA analysis indicating binding energy of all the complexes
Complex (Replica-1) vdW EEL ESURF EGB ΔG TOTAL
H-209-KRASG12C -55.26 -9.38 -4.51 28.34 -45.82
ZINC001458505494-KRASG12C -61.41 -11.74 -6.01 26.56 -47.61
SANC00905-KRASG12C -71.52 -20.78 -9.10 18.70 -53.71
PubChem-CID11968893-KRASG12C -69.60 -17.03 -8.53 23.89 -50.28
Sotorasib-KRASG12C -52.47 -7.00 -4.06 29.21 -45.42
Complex (Replica-2) vdW EEL ESURF EGB ΔG TOTAL
H-209-KRASG12C -48.78 -9.82 -5.86 25.38 -39.08
ZINC001458505494-KRASG12C -42.78 -5.46 -4.81 17.82 -35.24
SANC00905-KRASG12C -66.44 -4.81 -6.86 20.80 -57.33
PubChem-CID11968893-KRASG12C -66.58 -10.66 -6.66 32.41 -51.50
Sotorasib-KRASG12C -51.98 -11.82 -6.09 29.10 -40.80
vdW = van der Waals energy, EEL = electrostatic energy, ESURF = surface areas energy, EGB = the electrostatic contribution to the solvation free energy

Fig. 7  The DCCM map of (A) H-209- KRASG12C (B) PubChem-CID11968893-KRASG12C (C) SANC00905-KRASG12C (D) ZINC001458505494-KRASG12C (E) stan-
dard drug-KRASG12C complex. The X-axis and Y-axis display number of residues
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new inhibitors against STAT3 a cancer drug target, and 
the Main protease drug target in the SARS CoV-2 [20, 
54]. Similarly, some researchers used ML-based models 
for the identification of the functional groups responsible 
for binding [55]. A previous study used various ML algo-
rithms for the identification of the new inhibitors from 
the mangrove secondary metabolic natural products 
database against KRASG12C protein [56].

In this study, we also used ML-based virtual screen-
ing to predict new inhibitors against KRASG12C. Differ-
ent machine-learning models including the ensemble RF 
model, KNN, SVM, and GNB were used for the classifica-
tion purpose. The performance of all the proposed algo-
rithms was evaluated by the parameters such as accuracy, 
sensitivity, specificity, and MCC. The performance of all 
the models revealed that the ensemble RF model was the 
best by achieving an accuracy of 98%. The RF model was 
further used for the virtual screening of in-house, ZINC, 
Pakistani phytochemicals, and South African Natural 
Products databases. Phytochemicals, or naturally occur-
ring plant molecules, are important sources of new drug 
discovery and are also used to treat cancer. These phyto-
chemicals frequently work by controlling molecular path-
ways that are connected to the development and spread 
of cancer. The precise processes include boosting anti-
oxidant status, inhibiting carcinogens, reducing prolif-
eration, and inducing cell cycle arrest and apoptosis [58]. 
The previous study reported that the phytochemicals are 
effective against a variety of diseases including, diabetes, 
TB, skin infections, malaria, anemia, and epilepsy [57]. 
The hits predicted by the RF model were further docked 
against the KRASG12C. The docking results revealed a 
number of compounds with good docking scores and 
interactions with KRASG12C as compared to the stan-
dard drug sotorasib. Most of our predicted compounds 
revealed a similar pattern of interactions to the previous 
molecular docking studies carried out for KRASG12C. In 
the previous study two most promising compounds such 
as compound 14 and compound 44 revealed interactions 
with Cys12, Lys16, Pro34, Gly60, and Arg68 residues of 
the receptor [56]. Our compounds also established inter-
actions with Cys12, Lys16, Pro34 and Gly60. Similarly, 
in another study compound CID_146235508 was found 
the most potent compound against KRASG12C. This com-
pound made hydrogen bond and hydrophobic contacts 
with Cys12, Glu63, Lys16, Met72, Arg68, Ala59, and 
Tyr96 residues of the receptor [39] and a similar pattern 
of interactions was found in our study. After molecular 
docking, 100 ns MD simulation was performed for the 
top four complexes to reveal dynamic changes and the 
stability of the complexes. The RMSD analysis indicated 
the stable binding of the predicted compounds with the 
protein indicating these compounds as suitable inhibi-
tors against the KRASG12C. The RoG analysis which are 

in line with the RMSD profile, further supported the 
complex SANC00905- KRASG12C stability compared to 
all complexes. The calculated binding free energy for the 
four complexes and the control revealed that the binding 
energy of all the complexes was lower as compared to the 
standard drug which clearly indicates that these com-
pounds can bind strongly with the receptor and can make 
more stable complexes with the KRASG12C.

Conclusion
Targeting KRASG12C is found to be viable in anti-cancer 
research. In this study, both synthetic and natural com-
pounds were screened against KRASG12C using machine-
learning algorithms. To find the new hit compounds with 
the strongest anti-cancer potential, four databases such 
as ZINC, in-house, Pakistani phytochemicals, and South 
African Natural Products databases were screened. Using 
the molecular docking study the hits predicted from vir-
tual screening were further analyzed for interactions with 
KRASG12C. Based on the interaction, the compounds 
that revealed good binding interactions were selected 
for MD simulation and binding energy calculation. As 
compared to the standard drug sotorasib the four pre-
dicted compounds such as ZINC001458505494, H-209, 
SANC00905, and PubChem CID: 11,968,893 revealed 
great stability and strong binding affinity for KRASG12C. 
We hope our virtual screening protocol can be helpful to 
find new inhibitors against the KRAS mutants and other 
drug targets in the future.
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